• Title/Summary/Keyword: Co-Fe-Al-O

Search Result 327, Processing Time 0.028 seconds

Effect of Thermal Treatment on AIOx/Co90Fe10 Interface of Magnetic Tunnel Junctions Prepared by Radical Oxidation

  • Lee, Don-Koun;In, Jang-Sik;Hong, Jong-Ill
    • Journal of Magnetics
    • /
    • v.10 no.4
    • /
    • pp.137-141
    • /
    • 2005
  • We confirmed that the improvement in properties of magnetic tunnel junctions prepared by radical oxidation after thermal treatment was mostly resulted from the redistribution of oxygen at the $AIOx/Co_{90}Fe_{10}$ interface. The as-deposited Al oxide barrier was oxygen-deficient but most of it re-oxidized into $Al_2O_3$, the thermodynamically stable stoichiometric phase, through thermal treatment. As a result, the effective barrier height was increased from 1.52 eV to 2.27 eV. On the other hand, the effective barrier width was decreased from 8.2 ${\AA}$ to 7.5 ${\AA}$. X-ray absorption spectra of Fe and Co clearly showed that the oxygen in the CoFe layer diffused back into the Al barrier and thereby enriched the barrier to close to a stoichiometirc $Al_2O_3$ phase. The oxygen bonded with Co and Fe diffused back by 6.8 ${\AA}$ and 4.5 ${\AA}$ after thermal treatment, respectively. Our results confirm that controlling the chemical structures of the interface is important to improve the properties of magnetic tunnel junctions.

Preparation of Fe/$Al_2O_3$ Granules for Conversion of Syngas to Light Olefins by Fischer-Tropsch Reaction (합성가스에서 경질올레핀 제조를 위한 피셔-트롭시 반응용 구형 철-알루미나 촉매 합성)

  • Lee, Dong-Joon;Jung, Kwang-Deog;Yoo, Kye-Sang
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.333-336
    • /
    • 2010
  • Fe/$Al_2O_3$ granules with various compositions were prepared by combining sol-gel with oil drop method for Fishcer-Tropsh reaction to produce light olefin from synthesis gas. The granules was characterized and employed as a catalyst in the reaction. The surface area of granules was decreased with increasing Fe concentration. Especially, granule with 1.5 of Al/Fe ratios showed the highest CO conversion. However, the olefin selectivity was hardly affected by Al/Fe ratio. K concentration of granule gave a significant effect on catalytic performance. Initial CO conversion and olefin selectivity were increased with K concentration. However, the catalyst with higher K concentration was deactivated rapidly.

Nano-granular Co-Fe-Al-Q Soft Ferromagnetic Thin Films for RF Electromagnetic-noise Filters

  • Sohn, Jae-Cheon;Byun, Dong-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.42-50
    • /
    • 2006
  • Co-Fe-Al-O nano-granular thin films with high electrical resistivity, fabricated by radio frequency magnetron sputtering under an $Ar+O_2$ atmosphere, are found to show good soft magnetic properties in the GHz frequency range. The real part value of the relative permeability is 260 at low frequencies and this value is maintained up to the GHz frequency range. A non-integrated type noise filter on a coplanar waveguide transmission line is demonstrated by using the Co-Fe-Al-O nano-granular thin film with the dimensions of $4\;mm(l){\times}4\;mm(w){\times}0.1\;{\mu}m(t)$. The insertion loss is very low being less than 0.3 dB and this low value is maintained up to 2 GHz. At a ferromagnetic resonance frequency of 3.3 GHz, the degree of noise suppression is measured to be 3 dB. This level of noise attenuation is small for real applications, but there is much room for further improvement by increasing the magnetic volume and integrating the magnetic thin film into the CPW transmission line.

Characteristics of Sintering Densification of Co and Fe+Co Fine Powders (Co와 Fe+Co혼합미분의 소결치밀화 특성)

  • 임태환
    • Journal of Powder Materials
    • /
    • v.3 no.2
    • /
    • pp.97-103
    • /
    • 1996
  • The densification of the compacts of pure Co, Fe+50%.Co and Fe+25% Co sintered under H$_2$ gas or in vacuum was investigated. The effects of AL, Nb, Ti, and V additions on the densification were also studied. The sintered compact of Co was fully-dense when the density of the compact was lower than $Dg^c$. However, above $Dg^{c}$, it was never fully-dense regardless of sintering atmosphere, temperature, and time. The densification of sintered compacts of Fe-50% Co and Fe-25% Co were always incomplete. While the addition of AL made all compacts fully-dense, the addition of Ti was effective for the compacts of Co and Fe-25% Co. V was effective only for the Fe-25% Co. These results tell us that the particle size of Co powder, the amount of Fe, and the amount of additives forming stable oxides play on important role for the complete densification. Therefore it is desirable to reduce or eliminate the equilibrium pressure of H$_{2}$O or CO in isolated pores to obtain a fully-dense sintered compact.

  • PDF

Effect of Plasma Oxidation lime on TMR Devices of CoFe/AlO/CoFe/NiFe Structure (절연막층의 플라즈마 산화시간에 따른 CoFe/AlO/CoFe/NiFe 구조의 터널자기저항 효과 연구)

  • 이영민;송오성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.373-379
    • /
    • 2002
  • We investigated the evolution of magnetoresistance and magnetic property of tunneling magnetoresistive(TMR) device with microstructure and plasma oxidation time. TMR devices have potential applications for non volatile MRAM and high density HDD reading head. We prepared the tunnel magnetoresistance(TMR) devices of Ta($50{\AA}$)/NiFe($50{\AA}$)/IrMn($150{\AA}$)/CoFe($50{\AA}$)/Al($13{\AA}$)-O/CoFe($40{\AA}$)/FiFe($400{\AA}$)/Ta(($50{\AA}$) structure which have $100{\times}100\mu\textrm{m}^2$ junction area on $2.5{\times}2.5\textrm{cm}^2$ Si/$SiO_2$(($1000{\AA}$) substrates by an inductively coupled plasma(ICP) magnetron sputter. We fabricated the insulating layer using an ICP plasma oxidation method by with various oxidation time from 30 sec to 360 sec, and measured resistances and magnetoresistance(MR) ratios of TMR devices. We found that the oxidized sample for oxidation time of 80 sec showed the highest MR radio of 30.31 %, while the calculated value regarding inhomogeneous current effect indicated 25.18 %. We used transmission electron microscope(TEM) to investigate microstructural evolution of insulating layer. Comparing the cross-sectional TEM images at oxidation time of 150 sec and 360 sec, we found that the thickness and thickness variation of 360 sec-oxidized insulating layer became 30% and 40% larger than those of 150 sec-oxidized layer, repectively. Therefore, our results imply that increase of thickness variation with oxidation time may be one of the major treasons of the MR decrease.

Synergy Effect of Fe/ZSM-5 and Co-Pt/ZSM-5 for NOx removal (NOx제거를 위한 Fe/ZSM-5와 Co-Pt/ZSM-5의 상승 효과)

  • Kim, Jin-Gul;Yoo, Seung-Joon;Kim, Seong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2390-2395
    • /
    • 2009
  • In the condition of GHSV=$30000\;hr^{-1}$, $NO_x$ removal yield was higher as mole ratio of $SiO_2/Al_2O_3$ for Fe/ZSM-5 was lower regardless of preparation method such as CVD (chemical vapor deposition) and dry impregnation. In addition to this, Fe/ZSM-5 catalyst showed about 50% $NO_x$ removal yield between $350^{\circ}C$ - $400^{\circ}C$ while CO formed significantly. To remove newly formed CO over Fe/ZSM-5, Co-Pt/ZSM-5 was used in conjunction with Fe/ZSM-5 in the series and this demonstrated over 90% removal yield of both NOx and CO at $250^{\circ}C$ and GHSV=$30000\;hr^{-1}$.

Magnetization Switching of MTJs with CoFeSiB/Ru/CoFeSiB Free Layers (CoFeSiB/Ru/CoFeSiB 자유층을 갖는 자기터널 접합의 스위칭 자기장)

  • Lee, S.Y.;Lee, S.W.;Rhee, J.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.3
    • /
    • pp.124-127
    • /
    • 2007
  • Magnetic tunnel junctions (MTJs), which consisted of amorphous CoFeSiB layers, were investigated. The CoFeSiB layers were used to substitute for the traditionally used CoFe and/or NiFe layers with an emphasis given on understanding the effect of the amorphous free layer on the switching characteristics of the MTJs. CoFeSiB has a lower saturation magnetization ($M_s\;:\;560\;emu/cm^3$) and a higher anisotropy constant ($K_u\;:\;2800\;erg/cm^3$) than CoFe and NiFe, respectively. An exchange coupling energy ($J_{ex}$) of $-0.003\;erg/cm^2$ was observed by inserting a 1.0 nm Ru layer in between CoFeSiB layers. In the Si/$SiO_2$/Ta 45/Ru 9.5/IrMn 10/CoFe 7/$AlO_x$/CoFeSiB 7 or CoFeSiB (t)/Ru 1.0/CoFeSiB (7-t)/Ru 60 (in nm) MTJs structure, it was found that the size dependence of the switching field originated in the lower $J_{ex}$ using the experimental and simulation results. The CoFeSiB synthetic antiferromagnet structures were proved to be beneficial for the switching characteristics such as reducing the coercivity ($H_c$) and increasing the sensitivity in micrometer size, even in submicrometer sized elements.

A Study on Magnetoresistance Uniformity of NiFE/CoFe/AlO/CoFe/Ta TMR Devices Prepared by ICP Sputtering (ICP 스퍼터를 이용한 NiFe/CoFe/AlO/CoFe/Ta TMR 소자 제작에 있어서의 자기저항 균일성 연구)

  • 이영민;송오성
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.5
    • /
    • pp.189-195
    • /
    • 2001
  • We prepared TMR junctions of NiFe(170 )/CoFe(48 )/Al(13 )-O/CoFe(500 )/Ta(50 ) structure on 2.5$\times$2.5 $\textrm{cm}^2$ area Si/SiO$_2$ substrates in order to investigate the uniformity of magnetoresistance(MR) value using a ICP magnetron sputter. Each layer was deposited by the ICP magnetron sputter and tunnel barrier was formed by the plasma oxidation method. We measured MR ratio and resistance of TMR devices with four-terminal probe system by applying external magnetic field. Although we used ICP sputter which is known as superior to make uniform films, the standard variation of MR ratio was 2.72. The variation was not dependent on the TMR devices location of a substrate. We found that MR ratio and spin-flip field (H's) increased as the resistance increased, which may be caused by local interface irregularity of the insulating layer. The variation of resistance value was 64.19 and MR ratio was 2.72, respectively. Our results imply that to improve the insulating layer fabrication process including annealing process to lessen interface modulation in order to mass produce the TMR devices.

  • PDF

P123-Templated Co3O4/Al2O3 Mesoporous Mixed Oxides for Epoxidation of Styrene

  • Jung, Mie-Won;Kim, Young-Sil
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.316-320
    • /
    • 2012
  • $Co_3O_4$, $Al_2O_3$ and $Co_3O_4$/$Al_2O_3$ mesoporous powders were prepared by a sol-gel method with starting matierals of aluminum isopropoxide and cobalt (II) nitrate. A P123 template is employed as an active organic additive for improving the specific surface area of the mixed oxide by forming surfactant micelles. A transition metal cobalt oxide supported on alumina with and without P123 was tested to find the most active and selective conditions as a heterogeneous catalyst in the reaction of styrene epoxidation. A bBlock copolymer-P123 template was added to the staring materials to control physical and chemical properties. The properties of $Co_3O_4$/$Al_2O_3$ powder with and without P123 were characterized using an X-ray diffractometer (XRD), a Field-Emission Scanning Electron Microscope (FE-SEM), a Bruner-Emmertt-Teller (BET) surface analyzer, and $^{27}Al$ MAS NMR spectroscopy. Powders with and without P123 were compared in catalytic tests. The catalytic activity and selectivity were monitored by GC/MS, $^1H$, and $^{13}C$-NMR spectroscopy. The performance for the reaction of epoxidation of styrene was observed to be in the following order: [$Co_3O_4$/$Al_2O_3$ with P123-1173 K > $Co_3O_4$/$Al_2O_3$ with P123-973 K > $Co_3O_4$-973 K>$Co_3O_4$/$Al_2O_3$-973 K > $Co_3O_4$/$Al_2O_3$ with P123-1473 K > $Al_2O_3$-973 K]. The existence of ${\gamma}$-alumina and the nature of the surface morphology are related to catalytic activity.