• Title/Summary/Keyword: Co-Classification

Search Result 758, Processing Time 0.027 seconds

Conceptual Design and Development of an Automatic Classification System According to Radioactive Contamination Level Measurement and Contamination of Radioactive Metal Waste (방사성 금속폐기물의 방사능 오염도 측정 및 오염 여부에 따른 자동 분류 시스템 개념설계 및 개발)

  • Sun Beom Kwon;Bo Gil Kim;Jeong Min Yeom;Gyeong Mo Lee;Hong Yeon Lee;Sang Jun Han
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.11-17
    • /
    • 2023
  • Waste generated during the dismantling of nuclear power plants is not only diverse in types such as metal, concrete, soil, but also in a large amount, requiring systematic and efficient management. It is very important to quickly and accurately measure radioactive contamination of wastes generated simultaneously at the decommissioning site, classify them by level, and make decisions so that they can be disposed of in accordance with related laws and regulations. In this paper, for the technical and economic aspects of recycling of radioactive metal waste generated during the dismantling of nuclear power plants, we propose a management system that can measure the radioactive contamination by shape of metal waste at the decommissioning site and automatically classify it according to the presence or absence of contamination. Accordingly, a system for collecting information on metal samples such as weight measurement and shape acquisition of metal waste, measurement of radioactive contamination and identification of nuclides, and an automatic classification system according to radioactivity measurement results were described.

Automatic Classification of Department Types and Analysis of Co-Authorship Network: Focusing on Korean Journals in the Computer Field

  • Byungkyu Kim;Beom-Jong You;Min-Woo Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.53-63
    • /
    • 2023
  • The utilization of department information in bibliometric analysis using scientific and technological literature is highly advantageous. In this paper, the department information dataset was built through the screening, data refinement, and classification processing of authors' department type belonging to university institutions appearing in academic journals in the field of science and technology published in Korea, and the automatic classification model based on deep learning was developed using the department information dataset as learning data and verification data. In addition, we analyzed the co-authorship structure and network in the field of computer science using the department information dataset and affiliation information of authors from domestic academic journals. The research resulted in a 98.6% accuracy rate for the automatic classification model using Korean department information. Moreover, the co-authorship patterns of Korean researchers in the computer science and engineering field, along with the characteristics and centralities of the co-author network based on institution type, region, institution, and department type, were identified in detail and visually presented on a map.

Application of Multi-Class AdaBoost Algorithm to Terrain Classification of Satellite Images

  • Nguyen, Ngoc-Hoa;Woo, Dong-Min
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.536-543
    • /
    • 2014
  • Terrain classification is still a challenging issue in image processing, especially with high resolution satellite images. The well-known obstacles include low accuracy in the detection of targets, especially for the case of man-made structures, such as buildings and roads. In this paper, we present an efficient approach to classify and detect building footprints, foliage, grass and road from high resolution grayscale satellite images. Our contribution is to build a strong classifier using AdaBoost based on a combination of co-occurrence and Haar-like features. We expect that the inclusion of Harr-like feature improves the classification performance of the man-made structures, since Haar-like feature is extracted from corner features and rectangle features. Also, the AdaBoost algorithm selects only critical features and generates an extremely efficient classifier. Experimental result indicates that the classification accuracy of AdaBoost classifier is much higher than that of the conventional classifier using back propagation algorithm. Also, the inclusion of Harr-like feature significantly improves the classification accuracy. The accuracy of the proposed method is 98.4% for the target detection and 92.8% for the classification on high resolution satellite images.

Research on Function and Policy for e-Government System using Semantic Technology (전자정부내 의미기반 기술 도입에 따른 기능 및 정책 연구)

  • Jang, Young-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.5
    • /
    • pp.22-28
    • /
    • 2008
  • This paper aims to offer a solution based on semantic document classification to improve e-Government utilization and efficiency for people using their own information retrieval system and linguistic expression. Generally, semantic document classification method is an approach that classifies documents based on the diverse relationships between keywords in a document without fully describing hierarchial concepts between keywords. Our approach considers the deep meanings within the context of the document and radically enhances the information retrieval performance. Concept Weight Document Classification(CoWDC) method, which goes beyond using existing keyword and simple thesaurus/ontology methods by fully considering the concept hierarchy of various concepts is proposed, experimented, and evaluated. With the recognition that in order to verify the superiority of the semantic retrieval technology through test results of the CoWDC and efficiently integrate it into the e-Government, creation of a thesaurus, management of the operating system, expansion of the knowledge base and improvements in search service and accuracy at the national level were needed.

  • PDF

A patent analysis method for identifying core technologies: Data mining and multi-criteria decision making approach (핵심 기술 파악을 위한 특허 분석 방법: 데이터 마이닝 및 다기준 의사결정 접근법)

  • Kim, Chul-Hyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.1
    • /
    • pp.213-220
    • /
    • 2014
  • This study suggests new approach to identify core technologies through patent analysis. Specially, the approach applied data mining technique and multi-criteria decision making method to the co-classification information of registered patents. First, technological interrelationship matrices of intensity, relatedness, and cross-impact perspectives are constructed with support, lift and confidence values calculated by conducting an association rule mining on the co-classification information of patent data. Second, the analytic network process is applied to the constructed technological interrelationship matrices in order to produce the importance values of technologies from each perspective. Finally, data envelopment analysis is employed to the derived importance values in order to identify priorities of technologies, putting three perspectives together. It is expected that suggested approach could help technology planners to formulate strategy and policy for technological innovation.

Rock Mass Classification of Tertiary Unconsolidated Sedimentary Rocks In Pohang Area (포항지역 신생대 제3기 미고결 퇴적층의 암반분류)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Lee, Yung-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.999-1008
    • /
    • 2009
  • A series of sedimentary rocks which are formed in the Tertiary are distributed around Samcheok(Samcheok-Pukpyoung basin), Younghae(Younghae basin), Pohang(Pohang basin), Gyeongju(Yangnam basin), Ulsan(Ulsan basin), Jeju(Seogyuipo formation) in the southern region of the Korean Peninsula. This study concerned with geological, geophysical, geotechnical properties of the unconsolidated rocks in the Pohang area. A consolidated rocks are classified as hard rock - soft rock - weathered rock - residual soil follows in degree of weathering. But unconsolidated rocks has soil properties as well as rock's at the same time. The results of field excursion, boring, borehole-logging, rock testing, geophysical survey, laboratory test are soft rock range, but the durability of the rock until the residual soil from the weathered rock. We accomplished the rock mass classification of the unconsolidated rocks.

  • PDF

Object Classification Method Using Dynamic Random Forests and Genetic Optimization

  • Kim, Jae Hyup;Kim, Hun Ki;Jang, Kyung Hyun;Lee, Jong Min;Moon, Young Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.5
    • /
    • pp.79-89
    • /
    • 2016
  • In this paper, we proposed the object classification method using genetic and dynamic random forest consisting of optimal combination of unit tree. The random forest can ensure good generalization performance in combination of large amount of trees by assigning the randomization to the training samples and feature selection, etc. allocated to the decision tree as an ensemble classification model which combines with the unit decision tree based on the bagging. However, the random forest is composed of unit trees randomly, so it can show the excellent classification performance only when the sufficient amounts of trees are combined. There is no quantitative measurement method for the number of trees, and there is no choice but to repeat random tree structure continuously. The proposed algorithm is composed of random forest with a combination of optimal tree while maintaining the generalization performance of random forest. To achieve this, the problem of improving the classification performance was assigned to the optimization problem which found the optimal tree combination. For this end, the genetic algorithm methodology was applied. As a result of experiment, we had found out that the proposed algorithm could improve about 3~5% of classification performance in specific cases like common database and self infrared database compare with the existing random forest. In addition, we had shown that the optimal tree combination was decided at 55~60% level from the maximum trees.

Study of Comparison of Classification Accuracy of Airborne Hyperspectral Image Land Cover Classification though Resolution Change (해상도변화에 따른 항공초분광영상 토지피복분류의 분류정확도 비교 연구)

  • Cho, Hyung Gab;Kim, Dong Wook;Shin, Jung Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.155-160
    • /
    • 2014
  • This paper deals with comparison of classification accuracy between three land cover classification results having difference in resolution and they were classified with eight classes including building, road, forest, etc. Airborne hyperspectral image used in this study was acquired at 1000m, 2000m, 3000m elevation and had 24 bands(0.5m spatial resolution), 48 bands(1.0m), 96 bands(1.5m). Assessment of classification accuracy showed that the classification using 48 bands hyperspectral image had outstanding result as compared with other images. For using hyperspectral image, it was verified that 1m spatial resolution image having 48 bands was appropriate to classify land cover and qualitative improvement is expected in thematic map creation using airborne hyperspectral image.

New Unsupervised Classification Technique for Polarimetric SAR Images

  • Oh, Yi-Sok;Lee, Kyung-Yup;Jang, Ge-Ba
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.255-261
    • /
    • 2009
  • A new polarimetric SAR image classification technique based on the degree of polarization (DoP) and the co-polarized phase-difference (CPD) is presented in this paper. Since the DoP and the CPD of a scattered wave provide information on the randomness of the scattering and the type of scattering mechanisms, at first, the statistics of the DoP and CPD are examined with measured polarimetric SAR image data. Then, a DoP-CPD diagram with appropriate boundaries between six different classes is developed based on the SAR image. The classification technique is verified using the JPL AirSAR and ALOS PALSAR polarimetric data. The technique may have capability to classify an SAR image into six major classes; a bare surface, a village, a crown-layer short vegetation canopy, a trunk-layer short vegetation canopy, a crown-layer forest, and a trunk-dominated forest.