• 제목/요약/키워드: Co metal bond

검색결과 118건 처리시간 0.019초

저온소성 기판과 Cu와의 동시소성에 미치는 CuO의 첨가효과 (The Influence of CuO on Bonding Behaviors of Low-Firing-Substrate and Cu Conductor)

  • 박정현;이상진
    • 한국세라믹학회지
    • /
    • 제31권4호
    • /
    • pp.381-388
    • /
    • 1994
  • A new process which co-fires the low-firing-substrate and copper conductor was studied to achieve good bond strength and low sheet resistance of conductor. Cupric oxide is used as the precursor of conductive material in the new method and the firing atmosphere of the new process is changed sequently in air H2N2. The addition of cupric oxide and variations of firing atmosphere permited complete binder-burnout in comparison with the conventional method and contributed to the improvement of resistance and bonding behaviors. The potimum conditions of this experiment to obtain the satisfactory resistance and bond strength are as follows (binder-burnout temperature in air; 55$0^{\circ}C$, reducing temperature in H2; 40$0^{\circ}C$ for 30 min, ratio of copper and cupric oxide; 60:40~30:70 wt%). The bonding mechanism between the substrate and metal was explained by metal diffusion layer in the interface and the bond strength mainly depended on the stress caused by the difference of shrinkage and thermal expansion coefficient between the substrate and metal.

  • PDF

A STUDY ON THE ADHESION OF A SOFT LINER CONTAINING 4-META TO THE BASE METAL ALLOY AND ITS VISCOELASTIC PROPERTY

  • Park Hyun-Joo;Kim Chang-Whe;Kim Yung-Soo
    • 대한치과보철학회지
    • /
    • 제41권6호
    • /
    • pp.732-746
    • /
    • 2003
  • Statement of problem. Soft lining materials, also referred to as tissue conditioning materials, tissue heating materials, relining materials, soft liners or tissue conditioners, were first introduced to dentistry by a plastic manufacturer in 1959. Since the introduction of the materials to the dental field, their material properties have been continually improved through the effort of many researchers. Soft lining materials have become widely accepted, particularly by prosthodontists, because of their numerous clinical advantages and ease of manipulation. Unfortunately, few reports have been issued upon the topic of increasing the bond strength between the base metal alloy used in cast denture bases and PMMA soft liner modified with 4-META, nor upon the pattern of debonding and material change in wet environment like a intra oral situation. Purpose. The purposes of this study were comparing the bond strength between base metal alloy used for the cast denture bases and PMMA soft liner modified with 4-META, and describing the pattern of debonding and material property change in wet environment like the intraoral situation. Material and Methods. This study consisted of four experiments: 1. The in vitro measurement of shear bond strength of the adhesive soft liner. 2. The in vitro measurement of shear bond strength of the adhesive soft liner after 2 weeks of aging. 3. A comparison of debonding patterns. 4. An evaluation the Relation time of modified soft liner. The soft liner used in this study was commercially available as Coe-soft (GC America.IL.,USA), which is provided in forms of powder and liquid. This is a PMMA soft liner commonly used in dental clinics. The metal primer used in this study was 4-META containing primer packed in Meta fast denture base resin (Sun Medical Co., Osaka, Japan). The specimens were formed in a single lap joint desist which is useful for evaluating the apparent shear bond strength of adhesively bonded metal plate by tensile loading. Using the $20{\times}20mm$ transparent grid, percent area of adhesive soft liner remaining on the shear area was calculated to classify the debonding patterns. To evaluate the change of the initial flow of the modified adhesive soft liner, the gelation time was measured with an oscillating rheometer (Haake RS150W/ TC50, Haake Co., Germany). It was a stress control and parallel plate type with the diameter of 35mm. Conclusion. Within the conditions and limitations of this study, the following conclusions were drawn as follows. 1. There was significant increase of bond strength in the 5% 4-META, 10% 4-META containing groups and in the primer coated groups versus the control group(P<0.05). 2. After 2 weeks of aging, no significant increase in bond strength was found except for the group containing 10% 4-META (P<0.05). 3. The gelation times of the modified soft liner were 9.3 minutes for the 5% 4-META containing liner and 11.5 minutes for the 10% 4-META liner. 4. The debonding patterns of the 4-META containing group after 2 weeks of aging were similar to those of immediaely after preparation, but the debonding pattern of the primer group showed more adhesive failure after 2 weeks of aging.

Cobalt-Chromium 합금의 표면처리가 4-META/MMA-TBB 레진과의 접착에 미치는 영향 (EFFECT OF COBALT-CHROMIUM ALLOY SURFACE TREATMENT WHEN BONDING WITH 4-META/MMA-TBB RESIN)

  • 진재식;김교한;이청희;조광헌
    • 대한치과보철학회지
    • /
    • 제38권4호
    • /
    • pp.510-525
    • /
    • 2000
  • The effects of pretreatment of Co-Cr alloy, including two adhesive primers that contain either MDP or MAC-10, and silicoating on the bond The result sobtained as follows; o Strength of 4-META/MMA-TBB resin were investigated using FT-IR, SEM, and EDAX. o In the SEM observation of surface morphologies, the sandblasted specimen exibited a very rough surface, whereas the surfaces of the two groups primed with either MDP or MAC-10 were covered with a layer of primer, and the surface morphology of the silicoated specimen remained almost the same after sandblasting. o Before the thermocycling tests, the group treated with MDP demonstrated the highest mean tensile bond strength and the sandblasted group showed the lowest bond strength. o After 20,000 thermocyling, the mean tensile bond strength of the sandblasted group exhibited a 50% reduction in bond strength, while the others showed a $20\sim30%$ reduction. o Observation of the metal-resin interface revealed that in all groups the resin permeated the rough surface formed by sandblasting thereby producing a mechanical bond between the metal and the resin. It was also found that thermocycling resulted in a gap formation at the metal-resin interface of the specimens, and the sandblasted group exhibited a larger gap width than the other groups. o In fracture mode, all specimens indicated a cohesive fracture within the resin before thermocycling. However, thermocyling produced adhesive failure at the edge of the resin-metal interface in most specimens. The sandblasted group, which exhibited the lowest bond strength after thormocycling, also demonstrated the largest area of adhesive failure.

  • PDF

Thermocycling이 Cobalt-Chromium 합금과 의치상 레진의 결합강도에 미치는 영향 (THE EFFECTS OF THERMOCYCLING ON THE BOND STRENGTH BETWEEN COBALT-CHROMIUM ALLOY AND DENTURE BASE RESIN)

  • 이수연;방몽숙
    • 대한치과보철학회지
    • /
    • 제38권1호
    • /
    • pp.38-49
    • /
    • 2000
  • The purpose of this study was to evaluate the effects of thermocycling on the shear bond strength of Co-Cr alloy to denture base resin. PMMA denture base resin such as heat-cured $Vertex-RS^{(R)}$, self-cured $Vertex-SC^{(R)}$ and 4-META denture base resin such as heat-cured $Meta-Dent^{(R)}$, self-cured $Meta-Fast^{(R)}$ was bonded to Co-Cr alloy. Samples were divided into 3 groups : no thermocycling group as control, thermocycling between $5^{\circ}C\;and\;55^{\circ}C$ with 15 second dwell time as group 1, thermocycling with 1 minute dwell time as group 2. The shear bond strength was measured and the interface between metal and resin was observed by SEM. The results were as follows. 1. The shear bond strength decreased significantly according to thermocycling and dwell time(P<0.001). 2. The bond strength of Co-Cr alloy and 4-META denture base resin was significantly higher than that of Co-Cr alloy and PMMA denture base resin(P<0.001) 3. In SEM, there was no gap in control group, but there was much and large gap in group 1, 2. The longer dwell times, the lower bond strength. PMMA denture base resin had more gap than 4-META denture base resin in the interface. These results revealed that thermocycling decreased the bond strength between Co-Cr alloy and denture base resin and dwell time of thermocycling changed the effect of thermocycling. The results suggested that oral temperature change affect the bond strength of prosthesis.

  • PDF

Shear bond strength of luting cements to fixed superstructure metal surfaces under various seating forces

  • Ozer, Fusun;Pak-Tunc, Elif;Dagli, Nesrin Esen;Ramachandran, Deepika;Sen, Deniz;Blatz, Markus Bernhard
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권5호
    • /
    • pp.340-346
    • /
    • 2018
  • PURPOSE. In this study, the shear bond strengths (SBS) of luting cements to fixed superstructure metal surfaces under various seating forces were investigated. MATERIALS AND METHODS. Seven different cements [Polycarboxylate (PCC), Glass-Ionomer (GIC), Zinc phospahate (ZPC), Self-adhesive resin (RXU), Resin (C&B), and Temporary cements ((RXT) and (TCS))] were bonded to a total number of 224 square blocks ($5{\times}5{\times}3mm$) made of one pure metal [Titanium (CP Ti) and two metal alloys [Gold-Platinum (Au-Pt) and Cobalt-Chrome (Co-Cr)] under 10 N and 50 N seating forces. SBS values were determined and data were analyzed with 3-way ANOVA. Pairwise comparisons and interactions among groups were analyzed with Tukey's simultaneous confidence intervals. RESULTS. Overall mean scores indicated that Co-Cr showed the highest SBS values ($1.96{\pm}0.4$) (P<.00), while Au-Pt showed the lowest among all metals tested ($1.57{\pm}0.4$) (P<.00). Except for PCC/CP Ti, RXU/CP Ti, and GIC/Au-Pt factor level combinations (P<.00), the cements tested under 10 N seating force showed no significantly higher SBS values when compared to the values of those tested under 50 N seating force (P>.05). The PCC cement showed the highest mean SBS score ($3.59{\pm}0.07$) among all cements tested (P<.00), while the resin-based temporary luting cement RXT showed the lowest ($0.39{\pm}0.07$) (P<.00). CONCLUSION. Polycarboxylate cement provides reliable bonding performance to metal surfaces. Resin-based temporary luting cements can be used when retrievability is needed. GIC is not suitable for permanent cementation of fixed dental prostheses consisting of CP Ti or Au-Pt substructures.

치과용 Co-Cr 금속도재관의 표면처리에 의한 도재와의 결합 강도 분석 (Analysis of the bonding strength according to surface treatments of dental Co-Cr alloy for porcelain fused to metal)

  • 박희근;박원욱;조경명;황규홍
    • 대한치과기공학회지
    • /
    • 제38권3호
    • /
    • pp.175-183
    • /
    • 2016
  • Purpose: Observation of Oxide Film Formation and Bonding Strength according to surface treatment of Co-Cr Alloy for porcelain fused to Metal. Methods: metal specimens $0.5mm{\times}25mm{\times}4mm$ in size were made using Co-Cr alloys for porcelain fused to metal crown (Heraenium P, Tae jung Medis). Dental porcelain $0.5mm{\times}25mm{\times}4mm$ in size was sintered on the metal specimens after changing the etching time, sandblasting condition, and heat treatment temperature. Subsequently, the bonding strength was compared by the three-point flexural strength test using a universal testing machine (UTM) to observe the fracture surface and oxidized layers. Results: With regard to the experimental group treated with acid-etching, Specimen 1 treated for 25 minutes (B-3) showed the highest bonding strength, and Specimen 2 treated only with sandblasting showed the most excellent bonding force at 3.5 bar (C-3). With regard to the experimental group treated with sandblasting at 3.5 bar after acid-etching for 25 minutes, Specimen 3 with heat treatment at $980^{\circ}C$ (D-3) showed the highest bonding strength. Conclusion: The specimen which went through both sandblasting and etching, showed an excellent ceramicmetal bond strength.

원자가 결합법에 의한 전이원소 착물에 대한 쌍극자모멘트의 계산 (제1보). 팔면체 $[M(III)O_3S_3]$ 형태 착물의 쌍극자모멘트의 계산 [M(III) = V(III), Cr(III), Mn(III), Fe(III), Co(III), Ru(III), Rh(III) 및 Os(III)] (Calculation of the Dipole Moments for Transition Metal Complexes by Valence Bond Method (I). Calculation of the Dipole Moments for Octahedral $[M(III)O_3S_3]$ Type Complexes [M(III) = V(III), Cr(III), Mn(III), Fe(III), Co(III), Ru(III), Rh(III) and Os(III)])

  • 안상운;고정수
    • 대한화학회지
    • /
    • 제23권4호
    • /
    • pp.198-205
    • /
    • 1979
  • 금속이온의 $d^2sp^3$ 혼성궤도함수와 리간드의 singIe basis set 궤도함수를 사용하여 팔면체 [M(II)O_3S_3]$형태 착물의 쌍극자모멘트를 계산하는 원자가결합법을 발전시켰다. [M(III)=V(III), Cr(III), Mn(III), Fe(III), Co(III), Ru(III), Rh(III) 및 Os(III)]. 이 새로운 방법에 있어서 금속이온의 valence basis sets와 리간드 궤도함수사이의 혼성계수가 같다고 가정할 필요가 없으며 이것이 근사분자궤도함수법에 의한 팔면체 전이원소 착물의 쌍극자모멘트를 계산하는 방법과 다른점이다. 원자가결합법에서는 근사분자궤도함수법에서 보다도 훨씬 쉽게 팔면체착물의 쌍극자 모멘트를 계산할 수 있으며 계산한 쌍극자 모멘트의 값이 또한 실험치 범위에든다.

  • PDF

Porcelain repair - Influence of different systems and surface treatments on resin bond strength

  • Yoo, Ji-Young;Yoon, Hyung-In;Park, Ji-Man;Park, Eun-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권5호
    • /
    • pp.343-348
    • /
    • 2015
  • PURPOSE. The purpose of this study was to evaluate the bond strength of composite resin on the fracture surface of metal-ceramic depending on the repair systems and surface roughening methods. MATERIALS AND METHODS. A total of 30 disk specimens were fabricated, 15 of each were made from feldspathic porcelain and nickel-chromium base metal alloy. Each substrate was divided into three groups according to the repair method: a) application of repair system I (Intraoral Repair Kit) with diamond bur roughening (Group DP and DM), b) application of repair system I with airborne-particle abrasion (Group SP and SM), and c) application of repair system II (CoJet Intraoral Repair System, Group CP and CM). All specimens were thermocycled, and the shear bond strength was measured. The data were analyzed using the Kruskal-Wallis analysis and the Mann-Whitney test with a significance level of 0.05. RESULTS. For the porcelain specimens, group SP showed the highest shear bond strength ($25.85{\pm}3.51MPa$) and group DP and CP were not significantly different. In metal specimens, group CM showed superior values of bond strength ($13.81{\pm}3.45MPa$) compared to groups DM or SM. CONCLUSION. Airborne-particle abrasion and application of repair system I can be recommended in the case of a fracture localized to the porcelain. If the fracture extends to metal surface, the repair system II is worthy of consideration.

치과용 비귀금속 합금과 전장용 강화형 복합레진의 인장결합강도 (TENSILE BOND STRENGTH BETWEEN NON-PRECIOUS DENTAL ALLOY AND VENEERING REINFORCED COMPOSITE RESINS)

  • 양병덕;박주미;고석민;강건구
    • 대한치과보철학회지
    • /
    • 제38권4호
    • /
    • pp.427-437
    • /
    • 2000
  • Recently the 2nd generation laboratory composite resins were introduced. Although the mechanical properties of these composite resins have been improved, there were some disadvantages such as discoloration, low abrasion resistance and debonding between metal and resin. The purpose of this study was to evaluate the tensile bond strength between non-pecious dental alloy(verabond) and four veneering reinforced composite resins ; Targis(Ivoclar Co., U.S.A.), Artglass(Kulzer CO., Germany), Sculpture(Jeneric Pentron Co., U.S.A.), and Estonia(Kurary Co., Japan). All test metal specimens were polished with #1,000 SiC paper, and sandblasted with $250{\mu}m$ aluminum oxide. After then. according to manufacturer's instructions metal adhesive primer and veneering resins were applied. All test specimens were divided into two groups. One group was dried in a desiccator at $25^{\circ}C$ for 3 days, the other group was subjected to thermal cycling($2,000{\times}$) in water($5/55^{\circ}C$). Tensile bond strength was measured using Instron Universal Testing machine and the fractured surface was examined under the naked eyes and scanning electron microscope. Within the limitations imposed in this study, the following conclusions can be drawn: 1. In no-thermal cycling groups, there were no significant differences between Estenia and VMK68 but there were significant differences between Targis, Artglass, Sculpture and VMK68(p<0.05). 2. In no-thermal cycling resin groups, the highest tensile bond strength was observed in Estenia and there were significant differences between Estenia and the other resins(p<0.05). 3. Before and after thermal cycling, there were significant differences in tensile bond strength of Targis and Artglass(p<0.05). The tensile bond strength of Artglass was decreased and that of Targis was increased. 4. In no-thermal cycling groups, Artglass showed mixed fracture modes(95%), but after thermal cycling, Artglass showed adhesive fracture modes(75%).

  • PDF

Calculation of the Dipole Moments for Transition Metal Complexes by the Valence Bond Method (Ⅱ). Calculation of the Dipole Moments for Square Planar and Tetrahedral [M (Ⅱ) $N_2Se_2$] Type Complexes [M (Ⅱ) = Co (Ⅱ), Ni (Ⅱ) or Zn (Ⅱ)]

  • Ahn, Sang-Woon;Park, Eu-Suh;Lee, Kee-Hag
    • Bulletin of the Korean Chemical Society
    • /
    • 제2권3호
    • /
    • pp.79-82
    • /
    • 1981
  • A calculation method of the dipole moments for square planar and tetrahedral complexes by the valence bond method has been developed and an example calculation was carried out choosing the square planar and tetrahedral $[M(Ⅱ)N_2Se_2]$ type complexes. The calculated values of the dipole moments by the valence bond method are higher than those of the approximate orbital method. We found that we may predict the geometric structure of the transition metal complexes comparing the calculated values of the dipole moments with the experimental values. A new method for definition of C' parameter has also developed on the basis of extended Huckel theory.