• Title/Summary/Keyword: Co deposition

Search Result 1,123, Processing Time 0.028 seconds

Bi-sticking Coefficient of Bi-superconducting Thin Film Prepared by IBS Method

  • Lee, Hee-Kab;Lee, Joon-Ung;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.213-216
    • /
    • 1999
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristics temperature dependence : almost a constant value of 0.49 below 730$^{\circ}C$ and decreases linearly with temperature over 730$^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, Bi$_2$O$_3$ from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi(2212) phase formation in the co-deposition process.

  • PDF

Sticking Coefficient in Bi-thin Film Prepared by IBS Method

  • Yang, Sung-Ho;Park, Yong-Pil;Chun, Min-Woo;Park, Sung-Gyun;Park, Woon-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.193-197
    • /
    • 2000
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below 73$0^{\circ}C$ and decreases linearly with temperature over 73$0^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, Bi$_2$O$_3$, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi(2212) phase formation in the co-deposition process.

  • PDF

Growth Behavior and Thermal Stability of CoSi2 Layer on Poly-Si Substrate Using Reactive Chemical Vapor Deposition (반응성 CVD를 이용한 다결정 실리콘 기판에서의 CoSi2 layer의 성장거동과 열적 안정성에 관한 연구)

  • Kim, Sun-Il;Lee, Heui-Seung;Park, Jong-Ho;Ahn, Byung-Tae
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2003
  • Uniform polycrystalline $CoSi_2$layers have been grown in situ on a polycrystalline Si substrate at temperature near $625^{\circ}C$ by reactive chemical vapor deposition of cyclopentadienyl dicarbonyl cobalt, Co(η$^{5}$ -C$_{5}$ H$_{5}$ )(CO)$_2$. The growth behavior and thermal stability of $CoSi_2$layer grown on polycrystalline Si substrates were investigated. The plate-like CoSi$_2$was initially formed with either (111), (220) or (311) interface on polycrystalline Si substrate. As deposition time was increasing, a uniform epitaxial $CoSi_2$layer was grown from the discrete $CoSi_2$plate, where the orientation of the$ CoSi_2$layer is same as the orientation of polycrystalline Si grain. The interface between $CoSi_2$layer and polycrystalline Si substrate was always (111) coherent. The growth of the uniform $CoSi_2$layer had a parabolic relationship with the deposition time. Therefore we confirmed that the growth of $CoSi_2$layer was controlled by diffusion of cobalt. The thermal stability of $CoSi_2$layer on small grain-sized polycrystalline Si substrate has been investigated using sheet resistance measurement at temperature from $600^{\circ}C$ to $900^{\circ}C$. The $CoSi_2$layer was degraded at $900^{\circ}C$. Inserting a TiN interlayer between polycrystalline Si and $_CoSi2$layers improved the thermal stability of $CoSi_2$layer up to $900^{\circ}C$ due to the suppression of the Co diffusion.

Ni Silicide Formation and the Crystalline Silicion Film Growth

  • Kim, Jun-Dong;Ji, Sang-Won;Park, Yun-Chang;Lee, Jeong-Ho;Han, Chang-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.219-219
    • /
    • 2010
  • Silicides have been commonly used in the Si technology due to the compatibility with Si. Recently the silicide has been applied in solar cells [1] and nanoscale interconnects [2]. The modulation of Ni silicide phase is an important issue to satisfy the needs. The excellent electric-conductive nickel monosilicide (NiSi) nanowire has proven the low resistive nanoscale interconnects. Otherwise the Ni disilicide (NiSi2) provides a template to grow a crystalline Si film above it by the little lattice mismatch of 0.4% between Si and NiSi2. We present the formation of Ni silicide phases performed by the single deposition and the co-deposition methods. The co-deposition of Ni and Si provides a stable Ni silicide phase at a reduced processing temperature comparing to the single deposition method. It also discusses the Schottky contact formation between the Ni silicide and the grown crystalline Si film for the solar cell application.

  • PDF

A STUDY ON COPPER DEPOSITION PROCESS DURING ANODIC OXIDATION OF ALUMINIUM ALLOY

  • Koh, I.S.;Han, S.H.;Shin, D.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.444-446
    • /
    • 1999
  • The structure and composition of anodic films, formed on 6063 commercial aluminium alloy at constant current density of $1.5A/^dm2$ with various superimposed cathodic current ratio, in the range 0~33%, in the 11% $H_2SO_4$ with various concentration of $CuSO_4{\cdot}5H_2O$, in the range 0~75 g/l, without cathodic current are generally porous-type and no sign of Cu co-deposition appearance, suggesting that cathodic current is an important factor in the Cu co-deposition. Comparison with the anodic film thickness measurement results obtained from anodic film formed by direct anodic current and anodic film formed by superimposed various portion of cathodic current, the portion of cathodic current of input current increases with decrease of anodic film thickness and increases with increase of concentration of $Cu_2S{\;}and{\;}Cu_2O$ in the anodic film.

  • PDF

DEPENDENCE OF STRUCTURAL AND MAGNETIC PROPERTIES ON DEPOSITTION ANGLE IN EVAPORATED Co/Pt MULTILAYER THIN FILMS

  • Moon, Ki-Seok;Shin, Sung-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.465-469
    • /
    • 1995
  • We have investigated the effects of deposition angle on structural and magnetic properties of e-beam evaporated ${(4-{\AA}\;Co/9.2-{\AA}\;Pt)}_{23}$ multilayer thin films prepared on tilted substrates. It was found that the [111] crystallographic orientations of the multilayer thin films were not aligned with colummar growth orientations and they were remained to be normal to the substrate planes even though the deposition angle was severely oblique up to $60^{\circ}$. The analysis of the torque curve reveal that the intrinsic anisotropy energy was monotonically decreased with the deposition angle but the easy axis orientation parallel to the substrate normal was not much influenced by deposition angle.

  • PDF

Support Effect of Arc Plasma Deposited Pt Nanoparticles/TiO2 Substrate on Catalytic Activity of CO Oxidation

  • Qadir, Kamran;Kim, Sang Hoon;Kim, Sun Mi;Ha, Heonphil;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.261-261
    • /
    • 2013
  • The smart design of nanocatalysts can improve the catalytic activity of transition metals on reducible oxide supports, such as titania, via strong metal-support interactions. In this work, we investigatedtwo-dimensional Pt nanoparticle/titania catalytic systems under the CO oxidation reaction. Arc plasma deposition (APD) and metal impregnation techniques were employed to achieve Pt nanoparticle deposition on titania supports, which were prepared by multitarget sputtering and sol-gel techniques. APD Pt nanoparticles with an average size of 2.7 nm were deposited on sputtered and sol-gel-prepared titania films to assess the role of the titania support on the catalytic activity of Pt under CO oxidation. In order to study the nature of the dispersed metallic phase and its effect on the activity of the catalytic CO oxidation reaction, Pt nanoparticles were deposited in varying surface coverages on sputtered titania films using arc plasma deposition. Our results show an enhanced activity of Pt nanoparticles when the nanoparticle/titania interfaces are exposed. APD Pt shows superior catalytic activity under CO oxidation, as compared to impregnated Pt nanoparticles, due to the catalytically active nature of the mild surface oxidation and the active Pt metal, suggesting that APD can be used for large-scale synthesis of active metal nanocatalysts.

  • PDF

Preparation of Highly Dispersed Ru/$\alpha-Al_2O_3$ Catalyst for Preferential CO Oxidation (선택적 CO 산화 반응을 위한 Ru/$\alpha-Al_2O_3$ 촉매 고분산 제조 방법에 관한 연구)

  • Eom, Hyun-Ji;Koo, Kee-Young;Jung, Un-Ho;Rhee, Young-Woo;Yoon, Wang-Lai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.390-397
    • /
    • 2010
  • 0.5wt% Ru/$\alpha-Al_2O_3$ catalysts are prepared by deposition-precipitation method for the preferential CO oxidation In order to investigate the effect of pH on the Ru dispersion and particle size, the pH of precursor solution is adjusted to between 5.5 and 9.5. 0.5wt% Ru/$\alpha-Al_2O_3$ catalyst prepared at the pH of 6.5 has high Ru dispersion of 17.9% and small particle size of 7.7nm. In addition, 0.5wt% Ru/$\alpha-Al_2O_3$ catalyst prepared at the pH 6.5 is easily reduced at low temperatures below $150^{\circ}C$ due to high dispersion of $RuO_2$ particle and shows high CO conversion over 90% in the wide temperature range between $100^{\circ}C$ and $160^{\circ}C$. Moreover, the deposition-precipitation is a feasible method to improve the Ru dispersion as compared to the impregnation method. The 0.5wt% Ru/$\alpha-Al_2O_3$ catalyst prepared by deposition-precipitation exhibits higher CO conversion than 0.5wt% Ru/$\alpha-Al_2O_3$ catalysts prepared by impregnation due to higher metal dispersion and better reducibility at low temperature.

Fabrication of SmBCO superconducting coated conductor using 100m class batch-type co-evaporation method (100m 급 batch-type co-evaporation 증착장치를 이용한 SmBCO 초전도테이프 제조)

  • Kim, H.S.;Oh, S.S.;Ha, H.S.;Yang, J.S.;Kim, T.H.;Lee, N.J.;Jeong, Y.H.;Ko, R.K.;Song, K.J.;Ha, D.W.;Youm, D.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.24-25
    • /
    • 2006
  • SmBCO coated conductors were successfully fabricated using EDDC (Evaporation using Drum in Dual Chambers) deposition system that is a bath type co-evaporation system for fabrication of superconducting tape and divided into two chambers named evaporation chamber and reaction chamber. To obtain long and high quality superconducting coated conductor, it is very important to secure the uniformity of all the deposition parameters m the deposition system such as deposition temperature, oxygen partial pressure, compositional ratios and so on. Therefore, we investigated the distribution of the parameters along the axis of the drum m EDDC on which tapes were wound helically. When the temperature on the middle point of deposition zone was $700^{\circ}C$, that on the edge of deposition zone was $675^{\circ}C$. When the thickness of SmBCO layer on the middle point of deposition zone was 1063 nm, that on the edge of deposition zone was 899 nm. The partial pressure of oxygen was 5 mTorr in the reaction chamber while that was $7{\times}10^{-5}$Torr in the evaporation chamber. The composition ratio of Sm:Ba:Cu, that was measured by EDX, was very uniform along the axis of the drum. Under these deposition conditions, critical current distribution along the drum axis was 175 A/cm, 190A/cm, 217.5 A/cm, 182.5 A/cm, 175 A/cm with the interval of 9 cm between samples. It means that the EDDC system has the potential of fabricating (100m, 200A) class coated conductor.

  • PDF

The Characteristics of Solar Thermochemical Methane Reforming using Ferrite-based Metal Oxides (페라이트계 금속산화물을 이용한 태양 열화학 메탄 개질 특성)

  • Cha, Kwang-Seo;Lee, Dong-Hee;Jo, Won-Jun;Lee, Young-Seok;Kim, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.45-48
    • /
    • 2007
  • Thermochemical 2-step methane reforming, involving the reduction of metal oxide with methane to produce syn-gas and the oxidation of the reduced metal oxide with water to produce pure hydrogen, was investigated on ferrite-based metal oxide mediums and $WO_{3}/ZrO_{2}$. Thermochemical 2-step methane reforming were accomplished at 900 $^{\circ}C$(syn-gas production step) and 800 $^{\circ}C$(water-splitting step). In syn-gas production step, it appeared carbon deposition on metal oxides with increasing react ion time. Various mediums showed the different starting point of carbon deposition each other. To minimize the carbon deposition, the reaction time was controlled before the starting point of carbon deposition. As a result, $CO_{x}$ were not evolved in water-splitting step, Among the various metal oxides, $Mn-ferrite/ZrO_{2}$ showed high reactivity, proper $H_{2}/CO$ ratio, high selectivity of undesired $CO_{2}$ and high evolution of $H_{2}$.

  • PDF