• Title/Summary/Keyword: Co(II)

Search Result 2,037, Processing Time 0.02 seconds

Cobalt(II) Complex of 1,2-Bis(2,2'-bipyridyl-6-yl)ethane. Crystallization Process and Structural Analysis of Two Shapes of Crystals (1,2-비스(2,2'-디피리딜-6일)에탄의 코발트 착물. 두 가지 형태의 결정화 과정 및 구조 분석적 접근)

  • Park, Sung-Ho;Yoo, Kyung-Ho;Jung, Ok-Sang
    • Analytical Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.421-427
    • /
    • 1999
  • Two shapes of crystals have been isolated by the interdiffusion of $Co(NCS)_2$ dissolved in methanol with 1,2-bis(2,2'-bipyridyl-6-yl)ethane (bbpe) dissolved in chloroform. The two crystals have been elucidated as $trans-Co^{II}(NCS)_2(bbpe)$ and $trans-Co^{II}(NCS)_2(bbpe){\cdot}2CHCl_3$, by X-ray crystallography, elemental analysis, IR, and thermal analysis. The two molecular structures are very similar except for the absence or presence of chloroform solvate molecules. The bbpe ligand coordinates to the cobalt(II) ion in an open-ended tetradentate mode, resulting in discrete mononuclear cobalt(II) complex. The cobalt atom adopts a typical octahedral arrangement with six nitrogen donating atoms with two NCS groups in trans positions. A significant solid-to-solid phase transition occurs presumably due to the change of conformationally flexible bbpe ligand. The formation of both crystals oeeurs in a successive two-step process, the formation of $trans-Co^{II}(NCS)_2(bbpe)$ and its transformation into $trans-Co^{II}(NCS)_2(bbpe){\cdot}2CHCl_3$. The thermal stability and favorable formation of the solvate crystals may be ascribed to the interaction between S atom of NCS group and Cl of chloroform.

  • PDF

Effects of pH and the Existence of CO2 Gas on the Silica Surface Characteristics at Silica/Pb(II) Solution Interface (CO2 가스의 존재 여부와 용액의 pH가 Silica/Pb(II) 용액 계면에서 Silica 표면의 특성에 미치는 영향)

  • Lee, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.5
    • /
    • pp.263-271
    • /
    • 2003
  • Effects of the existence of $CO_2$ gas and pH on the silica surface characteristics at silica/Pb(II) and sodium dodecyl sulfonate (SDS, $C_{12}H_{25}SO_3Na$) solution interface were studied. The hydrophobic characteristics of silica surface was delineated by contact angle measurement and surface force measurement using atomic force microscopy (AFM). In $CO_2$ free condition provided by purging $N_2$ gas, the contact angle of fused silica surface in $10^{-4}M$ Pb(II) and SDS solution increased greatly up to $90^{\circ}$ compared with $40^{\circ}$ in atmospheric condition. It was due to the precipitation of $PbCO_3$ in atmospheric condition. In $CO_2$ free condition the change of contact angle and adhesion force ($F_{ad}$) in AFM, affected by pH change, was similar to the distribution of $PbOH^+$ ion in speciation diagram corresponding to $10^{-4}M$ total Pb(II). Therefore, it was convinced that the $PbOH^+$ ion among Pb(II) species would be the main adsorbing type on silica surface. Both of contact angle measurement and surface force measurement using AFM showed that the Pb only treatment made the silica surface hydrophobic. However, it could not be explained theoretically by current knowledge, and required further study in atomic level to solve the problem.

Electrochemical Properties of Pentadentate Binucleated Schiff Base Cobalt(Ⅱ) and Manganese(Ⅱ) Complexes in Nonaqueous Solvent (비수용매에서 이핵성 다섯자리 Schiff Base Cobalt(Ⅱ) 및 Manganese(Ⅱ) 착물들의 전기화학적 성질)

  • Ki-Hyung Chjo;Yong-Kook Choi;Song-Ju Lee;Seong-Seop Seo
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.3
    • /
    • pp.428-441
    • /
    • 1992
  • We synthesized a series of binuclear pentadentate Schiff base complexes such as $Co(Ⅱ)_2$ (BSPP)($H_2O)_2$, $Co(Ⅱ)_2$ (BSPD)($H_2O)_2$, $Mn(Ⅱ)_2$ (BSPP)($H_2O)_2$ and $Mn(Ⅱ)_2$ (BSPD)($H_2O)_2$, mononuclear pentadentate Schiff base complexes such as Co(Ⅱ)(BSP)($H_2O)$ and Mn(Ⅱ)(BSP)($H_2O)$. The composition of these complexes identified by IR, UV-visible spectrum, T.G.A., DSC, and elemental analysis. The electrochemical redox processes have been examined by cyclic voltammetry and differential pulse polarography with glassy carbon electrode in 0.1M TEAP-Py(-DMSO and -DMF) as a supporting electrolyte solution. As a result of electrochemical measurements, the reduction processes for pentadentate binuclear Schiff base cobalt(Ⅱ) and manganese(Ⅱ) complexes occurred to four steps in $M(Ⅲ)_2$ / $Mn(Ⅱ)_2$ and $Mn(Ⅱ)_2$ / $M(Ⅰ)_2$ (M; Co, Mn) two processes through each two reduction steps with one electron, by contrast, the mononuclear pentadentate Schiff base cobalt(Ⅱ) and manganese(Ⅱ) complexes occurred to two steps in M(Ⅲ) / M(Ⅱ) and M(Ⅱ) / M(Ⅰ) (M; Co, Mn) two processes with one electron reduction steps.

  • PDF

Spectrofluorimetric determination of trace Co(II) in aqueous samples with quinalizarin-β-cyclodextrin inclusion complex (Quinalizarin-β-cyclodextrin 내포 착물을 이용한 수용액 시료의 흔적량 Co(II)의 분광형광법 정량)

  • Baek, Hyeon Jung;Choi, Hee-Seon
    • Analytical Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.255-259
    • /
    • 2015
  • A technique on the determination of Co(II) in aqueous samples with quinalizarin-β-cyclodextrin inclusion complex was developed. The conditions such as pH of the sample solution, the concentration of quinalizarin and the concentration of β-CD were optimized to 11.3(±0.2), 1.2×10−6 M and 8.0×10−6 M, respectively. Under these optimum conditions, the calibration curve of Co(II) was obtained over concentration range of 5.0×10−9 ~ 1.2×10−7 M. The detection limit was 4.2×10−9 M (0.25 ng/mL). For validating this proposed technique, aqueous samples(stream water, reservoir water and tap water) were used. Recovery yields of 95~105% were obtained. The relative standard deviation(%) in aqueous samples were less than 7.0%. Based on experimental results, it is proposed that this technique can be applied to the practical determination of Co(II).

Complex Formation of 1,15-Diaza-3,4:12,13-dibenzo-5,8,11-trioxacycloheptadecane with Some Transition Metal Ions (전이금속이온과 1,15-Diaza-3,4:12,13-dibenzo-5,8,11-trioxacycloheptadecane과의 착물형성)

  • Cheul-Gyu Chang;Young-Kook Shin;Si-Joong Kim
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.526-531
    • /
    • 1986
  • The stability constants of 1,15-diaza-3,4:12,13-dibenzo-5,8,11-trioxacycloheptadecane (NenOdien H$_4$, L) with transition metal ions such as $Co^{2+},\;Ni^{2+},\;Cu^{2+},\;and\;Zn^{2+}$ have been determined by potentiometry in 95% methanol solution at 25$^{\circ}$C. The complex formation of the NenOdien $_4$ with the transition metal ions depends on the basicity of the donor atoms. The order of complex stability was Co(II) < Ni(II) < Cu(II) > Zn(II). The geometries of the complexes in solid state were discussed by visible-near infrared and infrared spectrophotometry, elemental analysis and electro-conductivity. The results suggest that the geometries of the solid complexes are octahedral for $[CoL_2(OH_2)Cl]Cl{\cdot}2H_2O$, $[NiL_2(OH_2)Cl]Cl{\cdot}2H_2O$, and $[ZnLCl_2]{\cdot}\frac{1}{2}H_2O$ and square pyramidal for [CuLCl]Cl, respectively.

  • PDF

Estimation of Vehicle's CO2 Emission using OBD-II Interface (OBD-II 인터페이스를 이용한 자동차 CO2 배출량 추정)

  • Jung, Kyung-Kwon;Choi, Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.12
    • /
    • pp.167-174
    • /
    • 2011
  • This paper described the estimation methods of CO2 emission of vehicles. The important of energy and environment has emerged in the world, and the field of vehicle's development as well. CO2 was particularly the object of emission-regulation that caused of global warming. There are performance comparison methods by driving mileage, International Panel on Climate Change (IPCC) and chemical equation for the combustion of Octane. We took the measurement by getting data through OBD-II port from vehicle covered 5 km on road. We got the diagnosis information, specific mileage and fuel consumption in this experiment. We are able to expect similar CO2 emission by the methods in the normal speed driving. Also, we can make more realistic approach of CO2 emission by the method of estimation by IPCC and chemical equation for the combustion of Octane in rapid acceleration driving.

Crystal Structure of Dehydrated Partially Cobalt(II)-Exchanged Zeolite X, $Co_{41}Na_{10}-X$ (부분적으로 $Co^{2+}$ 이온으로 치환된 제올라이트 X, $Co_{41}Na_{10}-X$를 탈수한 결정구조)

  • Jang, Se-Bok;Jeong, Mi-Suk;Han, Young-Wook;Kim, Yang
    • Korean Journal of Crystallography
    • /
    • v.6 no.2
    • /
    • pp.125-133
    • /
    • 1995
  • The crystal structure of dehydrated, partially Co(II)-exchanged zeolite X, stoichiometry Co2+Na+-X (Co41+Na10Si100Al92O384) per unit cell, has been determined from three-dimensional X-ray diffraction data gathered by counter methods. The structure was solved and refined in the cubic space group Fd3:α=24.544(1)Å at 21(1)℃. The crystal was prepared by ion exchange in a flowing stream using a solution 0.025 M each in Co(NO3)2 and Co(O2CCH3)2. The crystal was then dehydrated at 380℃ and 2×10-6 Torr for two days. The structure was refined to the final error indices, R1=0.059 and R2=0.046 with 211 reflections for which I > 3σ(I). Co2+ ions and Na+ ions are located at the four different crystallographic sites. Co2+ ions are located at two different sites of high occupancies. Sixteen Co2+ ions are located at the center of the double six-ring (site I; Co-O = 2.21(1)Å, O-Co-O = 90.0(4)°) and twenty-five Co2+ ions are located at site II in the supercage. Twenty-five Co2+ ions are recessed 0.09Å into the supercage from its three oxygen plane (Co-O = 2.05(1)Å, O-Co-O = 119.8(7)°). Na+ ions are located at two different sites of occupandies. Seven Na+ ions are located at site II in the supercage (Na-O = 2.29(1)Å, O-Na-O = 102(1)°). Three Na+ ions are statistically distribyted over site III, a 48-fold equipoint in the supercages on twofold axes (Na-O = 2.59(10)Å, O-Na-O = 69.0(3)°). Seven Na+ ions are recessed 1.02Å into the supercage from the three oxygen plane. It appears that Co2+ ions prefer sites I and II in order, and that Na+ ions occupy the remaining sites, II and III.

  • PDF

The Effects of the cis and trans Configurations of Ligands on the Calculated Dipole Moments for $[M(II)O_3N_3]$ and $[Ni(II)O_2N_4]$ Type Complexes ($[M(II)O_3N_3]$$[Ni(II)O_2N_4]$ 형태착물의 쌍극자 모멘트에 대한 리간드의 cis 및 trans 구조의 영향)

  • Sangwoon Ahn;Eu Suh Park;Chang Jin Choi
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.83-94
    • /
    • 1983
  • The effects of cis and trans configurations of ligands for $[M(II)O_3N_3]$ and $[Ni(II) O_2N_4]$ type complexes [M(II) = Co(III), Ni(II) and Cu(II)] on the calculated dipole moments have been investigated, adpoting the eigenvectors of EHT calculation. The calculated dipole moments for cis complexes are higher than those of trans complexes. The calculated dipole moments for the octahedral trans $[Co(III)O_3N_3]$ type complex fall in the range of experimental values. However the calculated dipole moments for cis $[Ni(II) O_2N_4]$ type complexes fall in the range of the experimental values. These results predicts the trans structure for $[Co(III)O_3N_3]$ and $[Ni(II) O_2N_4]$ type complexes. Those structures are in agreement with the experimental one (Three bidentate (O-N) ligands in $[M(II)O_3N_3]$ type complexes coordinate to the metal ion and two tridentate (O-N-N) ligands in [Ni(II)O2N4] type complexes coordinate to Ni(II) ion).

  • PDF