• Title/Summary/Keyword: Clustering analysis

Search Result 2,088, Processing Time 0.031 seconds

Clustering Validity of Social Network Subgroup Using Attribute Similarity (속성유사도에 따른 사회연결망 서브그룹의 군집유효성)

  • Yoon, Han-Seong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.1
    • /
    • pp.75-84
    • /
    • 2021
  • For analyzing big data, the social network is increasingly being utilized through relational data, which means the connection characteristics between entities such as people and objects. When the relational data does not exist directly, a social network can be configured by calculating relational data such as attribute similarity from attribute data of entities and using it as links. In this paper, the composition method of the social network using the attribute similarity between entities as a connection relationship, and the clustering method using subgroups for the configured social network are suggested, and the clustering effectiveness of the clustering results is evaluated. The analysis results can vary depending on the type and characteristics of the data to be analyzed, the type of attribute similarity selected, and the criterion value. In addition, the clustering effectiveness may not be consistent depending on the its evaluation method. Therefore, selections and experiments are necessary for better analysis results. Since the analysis results may be different depending on the type and characteristics of the analysis target, options for clustering, etc., there is a limitation. In addition, for performance evaluation of clustering, a study is needed to compare the method of this paper with the conventional method such as k-means.

A Two-Stage Method for Near-Optimal Clustering (최적에 가까운 군집화를 위한 이단계 방법)

  • 윤복식
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.29 no.1
    • /
    • pp.43-56
    • /
    • 2004
  • The purpose of clustering is to partition a set of objects into several clusters based on some appropriate similarity measure. In most cases, clustering is considered without any prior information on the number of clusters or the structure of the given data, which makes clustering is one example of very complicated combinatorial optimization problems. In this paper we propose a general-purpose clustering method that can determine the proper number of clusters as well as efficiently carry out clustering analysis for various types of data. The method is composed of two stages. In the first stage, two different hierarchical clustering methods are used to get a reasonably good clustering result, which is improved In the second stage by ASA(accelerated simulated annealing) algorithm equipped with specially designed perturbation schemes. Extensive experimental results are given to demonstrate the apparent usefulness of our ASA clustering method.

Variable Selection and Outlier Detection for Automated K-means Clustering

  • Kim, Sung-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.1
    • /
    • pp.55-67
    • /
    • 2015
  • An important problem in cluster analysis is the selection of variables that define cluster structure that also eliminate noisy variables that mask cluster structure; in addition, outlier detection is a fundamental task for cluster analysis. Here we provide an automated K-means clustering process combined with variable selection and outlier identification. The Automated K-means clustering procedure consists of three processes: (i) automatically calculating the cluster number and initial cluster center whenever a new variable is added, (ii) identifying outliers for each cluster depending on used variables, (iii) selecting variables defining cluster structure in a forward manner. To select variables, we applied VS-KM (variable-selection heuristic for K-means clustering) procedure (Brusco and Cradit, 2001). To identify outliers, we used a hybrid approach combining a clustering based approach and distance based approach. Simulation results indicate that the proposed automated K-means clustering procedure is effective to select variables and identify outliers. The implemented R program can be obtained at http://www.knou.ac.kr/~sskim/SVOKmeans.r.

Robust Similarity Measure for Spectral Clustering Based on Shared Neighbors

  • Ye, Xiucai;Sakurai, Tetsuya
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.540-550
    • /
    • 2016
  • Spectral clustering is a powerful tool for exploratory data analysis. Many existing spectral clustering algorithms typically measure the similarity by using a Gaussian kernel function or an undirected k-nearest neighbor (kNN) graph, which cannot reveal the real clusters when the data are not well separated. In this paper, to improve the spectral clustering, we consider a robust similarity measure based on the shared nearest neighbors in a directed kNN graph. We propose two novel algorithms for spectral clustering: one based on the number of shared nearest neighbors, and one based on their closeness. The proposed algorithms are able to explore the underlying similarity relationships between data points, and are robust to datasets that are not well separated. Moreover, the proposed algorithms have only one parameter, k. We evaluated the proposed algorithms using synthetic and real-world datasets. The experimental results demonstrate that the proposed algorithms not only achieve a good level of performance, they also outperform the traditional spectral clustering algorithms.

Clustering non-stationary advanced metering infrastructure data

  • Kang, Donghyun;Lim, Yaeji
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.2
    • /
    • pp.225-238
    • /
    • 2022
  • In this paper, we propose a clustering method for advanced metering infrastructure (AMI) data in Korea. As AMI data presents non-stationarity, we consider time-dependent frequency domain principal components analysis, which is a proper method for locally stationary time series data. We develop a new clustering method based on time-varying eigenvectors, and our method provides a meaningful result that is different from the clustering results obtained by employing conventional methods, such as K-means and K-centres functional clustering. Simulation study demonstrates the superiority of the proposed approach. We further apply the clustering results to the evaluation of the electricity price system in South Korea, and validate the reform of the progressive electricity tariff system.

Results of Discriminant Analysis with Respect to Cluster Analyses Under Dimensional Reduction

  • Chae, Seong-San
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.2
    • /
    • pp.543-553
    • /
    • 2002
  • Principal component analysis is applied to reduce p-dimensions into q-dimensions ( $q {\leq} p$). Any partition of a collection of data points with p and q variables generated by the application of six hierarchical clustering methods is re-classified by discriminant analysis. From the application of discriminant analysis through each hierarchical clustering method, correct classification ratios are obtained. The results illustrate which method is more reasonable in exploratory data analysis.

Clustering Algorithm by Grid-based Sampling

  • Park, Hee-Chang;Ryu, Jee-Hyun;Lee, Sung-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.535-543
    • /
    • 2003
  • Cluster analysis has been widely used in many applications, such as pattern analysis or recognition, data analysis, image processing, market research on on-line or off-line and so on. Clustering can identify dense and sparse regions among data attributes or object attributes. But it requires many hours to get clusters that we want, because clustering is more primitive, explorative and we make many data an object of cluster analysis. In this paper we propose a new method of clustering using sample based on grid. It is more fast than any traditional clustering method and maintains its accuracy.

  • PDF

Comparison of the Performance of Clustering Analysis using Data Reduction Techniques to Identify Energy Use Patterns

  • Song, Kwonsik;Park, Moonseo;Lee, Hyun-Soo;Ahn, Joseph
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.559-563
    • /
    • 2015
  • Identification of energy use patterns in buildings has a great opportunity for energy saving. To find what energy use patterns exist, clustering analysis has been commonly used such as K-means and hierarchical clustering method. In case of high dimensional data such as energy use time-series, data reduction should be considered to avoid the curse of dimensionality. Principle Component Analysis, Autocorrelation Function, Discrete Fourier Transform and Discrete Wavelet Transform have been widely used to map the original data into the lower dimensional spaces. However, there still remains an ongoing issue since the performance of clustering analysis is dependent on data type, purpose and application. Therefore, we need to understand which data reduction techniques are suitable for energy use management. This research aims find the best clustering method using energy use data obtained from Seoul National University campus. The results of this research show that most experiments with data reduction techniques have a better performance. Also, the results obtained helps facility managers optimally control energy systems such as HVAC to reduce energy use in buildings.

  • PDF

Medoid Determination in Deterministic Annealing-based Pairwise Clustering

  • Lee, Kyung-Mi;Lee, Keon-Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.178-183
    • /
    • 2011
  • The deterministic annealing-based clustering algorithm is an EM-based algorithm which behaves like simulated annealing method, yet less sensitive to the initialization of parameters. Pairwise clustering is a kind of clustering technique to perform clustering with inter-entity distance information but not enforcing to have detailed attribute information. The pairwise deterministic annealing-based clustering algorithm repeatedly alternates the steps of estimation of mean-fields and the update of membership degrees of data objects to clusters until termination condition holds. Lacking of attribute value information, pairwise clustering algorithms do not explicitly determine the centroids or medoids of clusters in the course of clustering process or at the end of the process. This paper proposes a method to identify the medoids as the centers of formed clusters for the pairwise deterministic annealing-based clustering algorithm. Experimental results show that the proposed method locate meaningful medoids.

K-means Clustering for Environmental Indicator Survey Data

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.185-192
    • /
    • 2005
  • There are many data mining techniques such as association rule, decision tree, neural network analysis, clustering, genetic algorithm, bayesian network, memory-based reasoning, etc. We analyze 2003 Gyeongnam social indicator survey data using k-means clustering technique for environmental information. Clustering is the process of grouping the data into clusters so that objects within a cluster have high similarity in comparison to one another. In this paper, we used k-means clustering of several clustering techniques. The k-means clustering is classified as a partitional clustering method. We can apply k-means clustering outputs to environmental preservation and environmental improvement.

  • PDF