• Title/Summary/Keyword: Clustering Problem

Search Result 710, Processing Time 0.03 seconds

Nonlinear intelligent control systems subjected to earthquakes by fuzzy tracking theory

  • Z.Y. Chen;Y.M. Meng;Ruei-Yuan Wang;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.33 no.4
    • /
    • pp.291-300
    • /
    • 2024
  • Uncertainty of the model, system delay and drive dynamics can be considered as normal uncertainties, and the main source of uncertainty in the seismic control system is related to the nature of the simulated seismic error. In this case, optimizing the management strategy for one particular seismic record will not yield the best results for another. In this article, we propose a framework for online management of active structural management systems with seismic uncertainty. For this purpose, the concept of reinforcement learning is used for online optimization of active crowd management software. The controller consists of a differential controller, an unplanned gain ratio, the gain of which is enhanced using an online reinforcement learning algorithm. In addition, the proposed controller includes a dynamic status forecaster to solve the delay problem. To evaluate the performance of the proposed controllers, thousands of ground motion data sets were processed and grouped according to their spectrum using fuzzy clustering techniques with spatial hazard estimation. Finally, the controller is implemented in a laboratory scale configuration and its operation is simulated on a vibration table using cluster location and some actual seismic data. The test results show that the proposed controller effectively withstands strong seismic interference with delay. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage. Simulation results is believed to achieved in the near future by the ongoing development of AI and control theory.

A Study on the Market Structure Analysis for Durable Goods Using Consideration Set:An Exploratory Approach for Automotive Market (고려상표군을 이용한 내구재 시장구조 분석에 관한 연구: 자동차 시장에 대한 탐색적 분석방법)

  • Lee, Seokoo
    • Asia Marketing Journal
    • /
    • v.14 no.2
    • /
    • pp.157-176
    • /
    • 2012
  • Brand switching data frequently used in market structure analysis is adequate to analyze non- durable goods, because it can capture competition between specific two brands. But brand switching data sometimes can not be used to analyze goods like automobiles having long term duration because one of main assumptions that consumer preference toward brand attributes is not changed against time can be violated. Therefore a new type of data which can precisely capture competition among durable goods is needed. Another problem of using brand switching data collected from actual purchase behavior is short of explanation why consumers consider different set of brands. Considering above problems, main purpose of this study is to analyze market structure for durable goods with consideration set. The author uses exploratory approach and latent class clustering to identify market structure based on heterogeneous consideration set among consumers. Then the relationship between some factors and consideration set formation is analyzed. Some benefits and two demographic variables - age and income - are selected as factors based on consumer behavior theory. The author analyzed USA automotive market with top 11 brands using exploratory approach and latent class clustering. 2,500 respondents are randomly selected from the total sample and used for analysis. Six models concerning market structure are established to test. Model 1 means non-structured market and model 6 means market structure composed of six sub-markets. It is exploratory approach because any hypothetical market structure is not defined. The result showed that model 1 is insufficient to fit data. It implies that USA automotive market is a structured market. Model 3 with three market structures is significant and identified as the optimal market structure in USA automotive market. Three sub markets are named as USA brands, Asian Brands, and European Brands. And it implies that country of origin effect may exist in USA automotive market. Comparison between modal classification by derived market structures and probabilistic classification by research model was conducted to test how model 3 can correctly classify respondents. The model classify 97% of respondents exactly. The result of this study is different from those of previous research. Previous research used confirmatory approach. Car type and price were chosen as criteria for market structuring and car type-price structure was revealed as the optimal structure for USA automotive market. But this research used exploratory approach without hypothetical market structures. It is not concluded yet which approach is superior. For confirmatory approach, hypothetical market structures should be established exhaustively, because the optimal market structure is selected among hypothetical structures. On the other hand, exploratory approach has a potential problem that validity for derived optimal market structure is somewhat difficult to verify. There also exist market boundary difference between this research and previous research. While previous research analyzed seven car brands, this research analyzed eleven car brands. Both researches seemed to represent entire car market, because cumulative market shares for analyzed brands exceeds 50%. But market boundary difference might affect the different results. Though both researches showed different results, it is obvious that country of origin effect among brands should be considered as important criteria to analyze USA automotive market structure. This research tried to explain heterogeneity of consideration sets among consumers using benefits and two demographic factors, sex and income. Benefit works as a key variable for consumer decision process, and also works as an important criterion in market segmentation. Three factors - trust/safety, image/fun to drive, and economy - are identified among nine benefit related measure. Then the relationship between market structures and independent variables is analyzed using multinomial regression. Independent variables are three benefit factors and two demographic factors. The result showed that all independent variables can be used to explain why there exist different market structures in USA automotive market. For example, a male consumer who perceives all benefits important and has lower income tends to consider domestic brands more than European brands. And the result also showed benefits, sex, and income have an effect to consideration set formation. Though it is generally perceived that a consumer who has higher income is likely to purchase a high priced car, it is notable that American consumers perceived benefits of domestic brands much positive regardless of income. Male consumers especially showed higher loyalty for domestic brands. Managerial implications of this research are as follow. Though implication may be confined to the USA automotive market, the effect of sex on automotive buying behavior should be analyzed. The automotive market is traditionally conceived as male consumers oriented market. But the proportion of female consumers has grown over the years in the automotive market. It is natural outcome that Volvo and Hyundai motors recently developed new cars which are targeted for women market. Secondly, the model used in this research can be applied easier than that of previous researches. Exploratory approach has many advantages except difficulty to apply for practice, because it tends to accompany with complicated model and to require various types of data. The data needed for the model in this research are a few items such as purchased brands, consideration set, some benefits, and some demographic factors and easy to collect from consumers.

  • PDF

Environmental monitoring system research based on low-power sensor network (저전력 센서네트워크 기반 환경모니터링 시스템 연구)

  • Kim, Ki-Tae;Kim, Dong-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.807-810
    • /
    • 2011
  • The sensor network technology for core technology of ubiquitous computing is in the spotlight recently, the research on sensor network is proceeding actively which is composed many different sensor node. USN(Ubiquitous Sensor Network) is the network that widely applies for life of human being. It works out to sense, storage, process, deliver every kind of appliances and environmental information from the stucktags and sensors. And it is possible to utilize to measure and monitor about the place of environmental pollution which is difficult for human to install. It's studied constantly since it be able to compose easily more subminiature, low-power, low-cost than previous one. And also it spotlights an important field of study, graft the green IT and IT of which the environment and IT unite stragically onto the Network. The problem for the air pollution in the office or the indoor except a specific working area is the continuously issue since the human beings have lived in the dwelling facilities. Measures for that problem are urgently needed. It's possible to solve for the freshair of outside with enough ventilation but that is the awkward situation to be managed by person. This study is the system engineering to management for indoor air condition under the sensor network. And research for efficiently manage an option.

  • PDF

A Study on Scale Effects of the MAUP According to the Degree of Spatial Autocorrelation - Focused on LBSNS Data - (공간적 자기상관성의 정도에 따른 MAUP에서의 스케일 효과 연구 - LBSNS 데이터를 중심으로 -)

  • Lee, Young Min;Kwon, Pil;Yu, Ki Yun;Huh, Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.25-33
    • /
    • 2016
  • In order to visualize point based Location-Based Social Network Services(LBSNS) data on multi-scaled tile map effectively, it is necessary to apply tile-based clustering method. Then determinating reasonable numbers and size of tiles is required. However, there is no such criteria and the numbers and size of tiles are modified based on data type and the purpose of analysis. In other words, researchers' subjectivity is always involved in this type of study. This is when Modifiable Areal Unit Problem(MAUP) occurs, that affects the results of analysis. Among LBSNS, geotagged Twitter data were chosen to find the influence of MAUP in scale effects perspective. For this purpose, the degree of spatial autocorrelation using spatial error model was altered, and change of distributions was analyzed using Morna's I. As a result, positive spatial autocorrelation showed in the original data and the spatial autocorrelation was decreased as the value of spatial autoregressive coefficient was increasing. Therefore, the intensity of the spatial autocorrelation of Twitter data was adjusted to five levels, and for each level, nine different size of grid was created. For each level and different grid sizes, Moran's I was calculated. It was found that the spatial autocorrelation was increased when the aggregation level was being increased and decreased in a certainpoint. Another tendency was found that the scale effect of MAUP was decreased when the spatial autocorrelation was high.

Energy Balancing Distribution Cluster With Hierarchical Routing In Sensor Networks (계층적 라우팅 경로를 제공하는 에너지 균등분포 클러스터 센서 네트워크)

  • Mary Wu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.3
    • /
    • pp.166-171
    • /
    • 2023
  • Efficient energy management is a very important factor in sensor networks with limited resources, and cluster techniques have been studied a lot in this respect. However, a problem may occur in which energy use of the cluster header is concentrated, and when the cluster header is not evenly distributed over the entire area but concentrated in a specific area, the transmission distance of the cluster members may be large or very uneven. The transmission distance can be directly related to the problem of energy consumption. Since the energy of a specific node is quickly exhausted, the lifetime of the sensor network is shortened, and the efficiency of the entire sensor network is reduced. Thus, balanced energy consumption of sensor nodes is a very important research task. In this study, factors for balanced energy consumption by cluster headers and sensor nodes are analyzed, and a balancing distribution clustering method in which cluster headers are balanced distributed throughout the sensor network is proposed. The proposed cluster method uses multi-hop routing to reduce energy consumption of sensor nodes due to long-distance transmission. Existing multi-hop cluster studies sets up a multi-hop cluster path through a two-step process of cluster setup and routing path setup, whereas the proposed method establishes a hierarchical cluster routing path in the process of selecting cluster headers to minimize the overhead of control messages.

Clustering Method based on Genre Interest for Cold-Start Problem in Movie Recommendation (영화 추천 시스템의 초기 사용자 문제를 위한 장르 선호 기반의 클러스터링 기법)

  • You, Tithrottanak;Rosli, Ahmad Nurzid;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.57-77
    • /
    • 2013
  • Social media has become one of the most popular media in web and mobile application. In 2011, social networks and blogs are still the top destination of online users, according to a study from Nielsen Company. In their studies, nearly 4 in 5active users visit social network and blog. Social Networks and Blogs sites rule Americans' Internet time, accounting to 23 percent of time spent online. Facebook is the main social network that the U.S internet users spend time more than the other social network services such as Yahoo, Google, AOL Media Network, Twitter, Linked In and so on. In recent trend, most of the companies promote their products in the Facebook by creating the "Facebook Page" that refers to specific product. The "Like" option allows user to subscribed and received updates their interested on from the page. The film makers which produce a lot of films around the world also take part to market and promote their films by exploiting the advantages of using the "Facebook Page". In addition, a great number of streaming service providers allows users to subscribe their service to watch and enjoy movies and TV program. They can instantly watch movies and TV program over the internet to PCs, Macs and TVs. Netflix alone as the world's leading subscription service have more than 30 million streaming members in the United States, Latin America, the United Kingdom and the Nordics. As the matter of facts, a million of movies and TV program with different of genres are offered to the subscriber. In contrast, users need spend a lot time to find the right movies which are related to their interest genre. Recent years there are many researchers who have been propose a method to improve prediction the rating or preference that would give the most related items such as books, music or movies to the garget user or the group of users that have the same interest in the particular items. One of the most popular methods to build recommendation system is traditional Collaborative Filtering (CF). The method compute the similarity of the target user and other users, which then are cluster in the same interest on items according which items that users have been rated. The method then predicts other items from the same group of users to recommend to a group of users. Moreover, There are many items that need to study for suggesting to users such as books, music, movies, news, videos and so on. However, in this paper we only focus on movie as item to recommend to users. In addition, there are many challenges for CF task. Firstly, the "sparsity problem"; it occurs when user information preference is not enough. The recommendation accuracies result is lower compared to the neighbor who composed with a large amount of ratings. The second problem is "cold-start problem"; it occurs whenever new users or items are added into the system, which each has norating or a few rating. For instance, no personalized predictions can be made for a new user without any ratings on the record. In this research we propose a clustering method according to the users' genre interest extracted from social network service (SNS) and user's movies rating information system to solve the "cold-start problem." Our proposed method will clusters the target user together with the other users by combining the user genre interest and the rating information. It is important to realize a huge amount of interesting and useful user's information from Facebook Graph, we can extract information from the "Facebook Page" which "Like" by them. Moreover, we use the Internet Movie Database(IMDb) as the main dataset. The IMDbis online databases that consist of a large amount of information related to movies, TV programs and including actors. This dataset not only used to provide movie information in our Movie Rating Systems, but also as resources to provide movie genre information which extracted from the "Facebook Page". Formerly, the user must login with their Facebook account to login to the Movie Rating System, at the same time our system will collect the genre interest from the "Facebook Page". We conduct many experiments with other methods to see how our method performs and we also compare to the other methods. First, we compared our proposed method in the case of the normal recommendation to see how our system improves the recommendation result. Then we experiment method in case of cold-start problem. Our experiment show that our method is outperform than the other methods. In these two cases of our experimentation, we see that our proposed method produces better result in case both cases.

Personalized Recommendation System for IPTV using Ontology and K-medoids (IPTV환경에서 온톨로지와 k-medoids기법을 이용한 개인화 시스템)

  • Yun, Byeong-Dae;Kim, Jong-Woo;Cho, Yong-Seok;Kang, Sang-Gil
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.147-161
    • /
    • 2010
  • As broadcasting and communication are converged recently, communication is jointed to TV. TV viewing has brought about many changes. The IPTV (Internet Protocol Television) provides information service, movie contents, broadcast, etc. through internet with live programs + VOD (Video on demand) jointed. Using communication network, it becomes an issue of new business. In addition, new technical issues have been created by imaging technology for the service, networking technology without video cuts, security technologies to protect copyright, etc. Through this IPTV network, users can watch their desired programs when they want. However, IPTV has difficulties in search approach, menu approach, or finding programs. Menu approach spends a lot of time in approaching programs desired. Search approach can't be found when title, genre, name of actors, etc. are not known. In addition, inserting letters through remote control have problems. However, the bigger problem is that many times users are not usually ware of the services they use. Thus, to resolve difficulties when selecting VOD service in IPTV, a personalized service is recommended, which enhance users' satisfaction and use your time, efficiently. This paper provides appropriate programs which are fit to individuals not to save time in order to solve IPTV's shortcomings through filtering and recommendation-related system. The proposed recommendation system collects TV program information, the user's preferred program genres and detailed genre, channel, watching program, and information on viewing time based on individual records of watching IPTV. To look for these kinds of similarities, similarities can be compared by using ontology for TV programs. The reason to use these is because the distance of program can be measured by the similarity comparison. TV program ontology we are using is one extracted from TV-Anytime metadata which represents semantic nature. Also, ontology expresses the contents and features in figures. Through world net, vocabulary similarity is determined. All the words described on the programs are expanded into upper and lower classes for word similarity decision. The average of described key words was measured. The criterion of distance calculated ties similar programs through K-medoids dividing method. K-medoids dividing method is a dividing way to divide classified groups into ones with similar characteristics. This K-medoids method sets K-unit representative objects. Here, distance from representative object sets temporary distance and colonize it. Through algorithm, when the initial n-unit objects are tried to be divided into K-units. The optimal object must be found through repeated trials after selecting representative object temporarily. Through this course, similar programs must be colonized. Selecting programs through group analysis, weight should be given to the recommendation. The way to provide weight with recommendation is as the follows. When each group recommends programs, similar programs near representative objects will be recommended to users. The formula to calculate the distance is same as measure similar distance. It will be a basic figure which determines the rankings of recommended programs. Weight is used to calculate the number of watching lists. As the more programs are, the higher weight will be loaded. This is defined as cluster weight. Through this, sub-TV programs which are representative of the groups must be selected. The final TV programs ranks must be determined. However, the group-representative TV programs include errors. Therefore, weights must be added to TV program viewing preference. They must determine the finalranks.Based on this, our customers prefer proposed to recommend contents. So, based on the proposed method this paper suggested, experiment was carried out in controlled environment. Through experiment, the superiority of the proposed method is shown, compared to existing ways.

Big Five Personality in Discriminating the Groups by the Level of Social Sims (심리학적 도구 '5요인 성격 특성'에 의한 소셜 게임 연구: <심즈 소셜> 게임의 분석사례를 중심으로)

  • Lee, Dong-Yeop
    • Cartoon and Animation Studies
    • /
    • s.29
    • /
    • pp.129-149
    • /
    • 2012
  • The purpose of this study was to investigate the clustering and Big Five Personality domains in discriminating groups by level of school-related adjustment, as experienced by Social Sims game users. Social Games are based on web that has simple rules to play in fictional time and space background. This paper is to analyze the relationships between social networks and user behaviors through the social games . In general, characteristics of social games are simple, fun and easy to play, popular to the public, and based on personal connections in reality. These features of social games make themselves different from video games with one player or MMORPG with many unspecific players. Especially Social Game show a noticeable characteristic related to social learning. The object of this research is to provide a possibility that game that its social perspective can be strengthened in social game environment and analyze whether it actually influences on problem solving of real life problems, therefore suggesting its direction of alternative play means and positive simulation game. Data was collected by administering 4 questionnaires (the short version of BFI, Satisfaction with life, Career Decision-.Making Self-.Efficacy, Depression) to the participants who were 20 people in Seoul and Daejeon. For the purposes of the data analysis, both Stepwise Discriminant analysis and Cluster analysis was employed. Neuroticism, Openness, Conscientiousness within the Big Five Personality domains were seen to be significant variables when it came to discriminating the groups. These findings indicated that the short version of the BFI may be useful in understanding for game user behaviors When it comes to cultural research, digital game takes up a significant role. We can see that from the fact that game, which has only been considered as a leisure activity or commercial means, is being actively research for its methodological, social role and function. Among digital game's several meanings, one of the most noticeable ones is the research on its critical, social participating function. According to Jame Paul gee, the most important merit of game is 'projected identity'. This means that experiences from various perspectives is possible.[1] In his recent autobiography , he described gamer as an active problem solver. In addition, Gonzalo Francesca also suggested an alternative game developing method through 'game that conveys critical messages by strengthening critical reasons'. [2] They all provided evidences showing game can be a strong academic tool. Not only does a genre called social game exist in the field of media and Social Network Game, but there are also some efforts to positively evaluate its value Through these kinds of researches, we can study how game can give positive influence along with the change in its general perception, which would eventually lead to spreading healthy game culture and enabling fresh life experience. This would better bring out the educative side of the game and become a social communicative tool. The object of this game is to provide a possibility that the social aspect can be strengthened within the game environment and analyze whether it actually influences the problem solving of real life problems. Therefore suggesting it's direction of alternative play means positive game simulation.

A Movie Recommendation System based on Fuzzy-AHP with User Preference and Partition Algorithm (사용자 선호도와 군집 알고리즘을 이용한 퍼지-계층적 분석 기법 기반 영화 추천 시스템)

  • Oh, Jae-Taek;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.15 no.11
    • /
    • pp.425-432
    • /
    • 2017
  • The current recommendation systems have problems including the difficulty of figuring out whether they recommend items that actual users have preference for or have simple interest in, the scarcity of data to recommend proper items due to the extremely small number of users, and the cold-start issue of the dropping system performance to recommend items that can satisfy users according to the influx of new users. In an effort to solve these problems, this study implemented a movie recommendation system to ensure user satisfaction by using the Fuzzy-Analytic Hierarchy Process, which can reflect uncertain situations and problems, and the data partition algorithm to group similar items among the given ones. The data of a survey on movie preference with 61 users was applied to the system, and the results show that it solved the data scarcity problem based on the Fuzzy-AHP and recommended items fit for a user with the data partition algorithm even with the influx of new users. It is thought that research on the density-based clustering will be needed to filter out future noise data or outlier data.

Automatic Clustering of Same-Name Authors Using Full-text of Articles (논문 원문을 이용한 동명 저자 자동 군집화)

  • Kang, In-Su;Jung, Han-Min;Lee, Seung-Woo;Kim, Pyung;Goo, Hee-Kwan;Lee, Mi-Kyung;Goo, Nam-Ang;Sung, Won-Kyung
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.652-656
    • /
    • 2006
  • Bibliographic information retrieval systems require bibliographic data such as authors, organizations, source of publication to be uniquely identified using keys. In particular, when authors are represented simply as their names, users bear the burden of manually discriminating different users of the same name. Previous approaches to resolving the problem of same-name authors rely on bibliographic data such as co-author information, titles of articles, etc. However, these methods cannot handle the case of single author articles, or the case when articles do not have common terms in their titles. To complement the previous methods, this study introduces a classification-based approach using similarity between full-text of articles. Experiments using recent domestic proceedings showed that the proposed method has the potential to supplement the previous meta-data based approaches.

  • PDF