• 제목/요약/키워드: Clustering Problem

검색결과 710건 처리시간 0.036초

Dynamic Clustering for Load-Balancing Routing In Wireless Mesh Network

  • Thai, Pham Ngoc;Hwang, Min-Tae;Hwang, Won-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제10권12호
    • /
    • pp.1645-1654
    • /
    • 2007
  • In this paper, we study the problem of load balancing routing in clustered-based wireless mesh network in order to enhance the overall network throughput. We first address the problems of cluster allocation in wireless mesh network to achieve load-balancing state. Due to the complexity of the problem, we proposed a simplified algorithm using gradient load-balancing model. This method searches for a localized optimal solution of cluster allocation instead of solving the optimal solution for overall network. To support for load-balancing algorithm and reduce complexity of topology control, we also introduce limited broadcasting between two clusters. This mechanism maintain shortest path between two nodes in adjacent clusters while minimizing the topology broadcasting complexity. The simulation experiments demonstrate that our proposed model achieve performance improvement in terms of network throughput in comparison with other clustering methods.

  • PDF

A Policy on Efficient Load-Balancing Using Contents-Based Game Servers

  • Myung, Won-Shig
    • International Journal of Contents
    • /
    • 제3권1호
    • /
    • pp.9-13
    • /
    • 2007
  • This paper proposes a policy on efficient load balancing that can reduce the network game server load burdened by surging number of users. The study adopted a contents-based clustering technique. Recently, skyrocketing number of clients in on-line games causes overloads on specific game servers, and the consequent server-instability brings the worst situation: a server failure. To cope with this problem, one can install more high-powered servers or be equipped with back-up servers, which is often inefficient in terms of cost performance. To solve this problem, the present study examined the technology enhancing the performance and efficiency of game servers by reducing the loads of specific game servers. In doing this, this study used the clustering technology to compose game servers classified by their contents and carried out appropriate load balancing to numerous clients with load balancers in each region.

Hybrid Self Organizing Map using Monte Carlo Computing

  • 전성해;박민재;오경환
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.381-384
    • /
    • 2006
  • Self Organizing Map(SOM) is a powerful neural network model for unsupervised loaming. In many clustering works with exploratory data analysis, it has been popularly used. But it has a weakness which is the poorly theoretical base. A lot more researches for settling the problem have been published. Also, our paper proposes a method to overcome the drawback of SOM. As compared with the presented researches, our method has a different approach to solve the problem. So, a hybrid SOM is proposed in this paper. Using Monte Carlo computing, a hybrid SOM improves the performance of clustering. We verify the improved performance of a hybrid SOM according to the experimental results using UCI machine loaming repository. In addition to, the number of clusters is determined by our hybrid SOM.

  • PDF

시간제약을 가진 다회방문 차량경로문제에 대한 휴리스틱 알고리즘 (A heuristic algorithm for the multi-trip vehicle routing problem with time windows)

  • 김미이;이영훈
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2006년도 춘계공동학술대회 논문집
    • /
    • pp.1740-1745
    • /
    • 2006
  • This paper is concerned with a novel heuristic algorithm for the multi-trip vehicle routing problem with time windows. The objective function is the minimization of total vehicle operating time, fixed cost of vehicle and the minimization of total lateness of customer. A mixed integer programming formulation and a heuristic algorithm for a practical use are suggested. A heuristic algorithm is constructed two phases such as clustering and routing. Clustering is progressed in order to assign appropriate vehicle to customer, and then vehicle trip and route are decided considering traveling distance and time window. It is shown that the suggested heuristic algorithm gives good solutions within a short computation time by experimental result.

  • PDF

Modified Phonetic Decision Tree For Continuous Speech Recognition

  • Kim, Sung-Ill;Kitazoe, Tetsuro;Chung, Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • 제17권4E호
    • /
    • pp.11-16
    • /
    • 1998
  • For large vocabulary speech recognition using HMMs, context-dependent subword units have been often employed. However, when context-dependent phone models are used, they result in a system which has too may parameters to train. The problem of too many parameters and too little training data is absolutely crucial in the design of a statistical speech recognizer. Furthermore, when building large vocabulary speech recognition systems, unseen triphone problem is unavoidable. In this paper, we propose the modified phonetic decision tree algorithm for the automatic prediction of unseen triphones which has advantages solving these problems through following two experiments in Japanese contexts. The baseline experimental results show that the modified tree based clustering algorithm is effective for clustering and reducing the number of states without any degradation in performance. The task experimental results show that our proposed algorithm also has the advantage of providing a automatic prediction of unseen triphones.

  • PDF

Avoiding Energy Holes Problem using Load Balancing Approach in Wireless Sensor Network

  • Bhagyalakshmi, Lakshminarayanan;Murugan, Krishanan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권5호
    • /
    • pp.1618-1637
    • /
    • 2014
  • Clustering wireless sensor network is an efficient way to reduce the energy consumption of individual nodes in a cluster. In clustering, multihop routing techniques increase the load of the Cluster head near the sink. This unbalanced load on the Cluster head increases its energy consumption, thereby Cluster heads die faster and create an energy hole problem. In this paper, we propose an Energy Balancing Cluster Head (EBCH) in wireless sensor network. At First, we balance the intra cluster load among the cluster heads, which results in nonuniform distribution of nodes over an unequal cluster size. The load received by the Cluster head in the cluster distributes their traffic towards direct and multihop transmission based on the load distribution ratio. Also, we balance the energy consumption among the cluster heads to design an optimum load distribution ratio. Simulation result shows that this approach guarantees to increase the network lifetime, thereby balancing cluster head energy.

An Adaption of Pattern Sequence-based Electricity Load Forecasting with Match Filtering

  • Chu, Fazheng;Jung, Sung-Hwan
    • 한국멀티미디어학회논문지
    • /
    • 제20권5호
    • /
    • pp.800-807
    • /
    • 2017
  • The Pattern Sequence-based Forecasting (PSF) is an approach to forecast the behavior of time series based on similar pattern sequences. The innovation of PSF method is to convert the load time series into a label sequence by clustering technique in order to lighten computational burden. However, it brings about a new problem in determining the number of clusters and it is subject to insufficient similar days occasionally. In this paper we proposed an adaption of the PSF method, which introduces a new clustering index to determine the number of clusters and imposes a threshold to solve the problem caused by insufficient similar days. Our experiments showed that the proposed method reduced the mean absolute percentage error (MAPE) about 15%, compared to the PSF method.

Demand-based charging strategy for wireless rechargeable sensor networks

  • Dong, Ying;Wang, Yuhou;Li, Shiyuan;Cui, Mengyao;Wu, Hao
    • ETRI Journal
    • /
    • 제41권3호
    • /
    • pp.326-336
    • /
    • 2019
  • A wireless power transfer technique can solve the power capacity problem in wireless rechargeable sensor networks (WRSNs). The charging strategy is a wide-spread research problem. In this paper, we propose a demand-based charging strategy (DBCS) for WRSNs. We improved the charging programming in four ways: clustering method, selecting to-be-charged nodes, charging path, and charging schedule. First, we proposed a multipoint improved K-means (MIKmeans) clustering algorithm to balance the energy consumption, which can group nodes based on location, residual energy, and historical contribution. Second, the dynamic selection algorithm for charging nodes (DSACN) was proposed to select on-demand charging nodes. Third, we designed simulated annealing based on performance and efficiency (SABPE) to optimize the charging path for a mobile charging vehicle (MCV) and reduce the charging time. Last, we proposed the DBCS to enhance the efficiency of the MCV. Simulations reveal that the strategy can achieve better performance in terms of reducing the charging path, thus increasing communication effectiveness and residual energy utility.

Noisy Image Segmentation via Swarm-based Possibilistic C-means

  • Yu, Jeongmin
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권12호
    • /
    • pp.35-41
    • /
    • 2018
  • In this paper, we propose a swarm-based possibilistic c-means(PCM) algorithm in order to overcome the problems of PCM, which are sensitiveness of clustering performance due to initial cluster center's values and producing coincident or close clusters. To settle the former problem of PCM, we adopt a swam-based global optimization method which can be provided the optimal initial cluster centers. Furthermore, to settle the latter problem of PCM, we design an adaptive thresholding model based on the optimized cluster centers that yields preliminary clustered and un-clustered dataset. The preliminary clustered dataset plays a role of preventing coincident or close clusters and the un-clustered dataset is lastly clustered by PCM. From the experiment, the proposed method obtains a better performance than other PCM algorithms on a simulated magnetic resonance(MR) brain image dataset which is corrupted by various noises and bias-fields.

시공간 질의 클러스터링: 데이터 큐빙 기법 (Spatio-temporal Query Clustering: A Data Cubing Approach)

  • 심상예;백성하;배해영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 추계학술발표대회
    • /
    • pp.287-288
    • /
    • 2009
  • Multi-query optimization (MQO) is a critical research issue in the real-time data stream management system (DSMS). We propose to address this problem in the ubiquitous GIS (u-GIS) environment, focusing on grouping 'similar' spatio-temporal queries incrementally into N clusters so that they can be processed virtually as N queries. By minimizing N, the overlaps in the data requirements of the raw queries can be avoided, which implies the reducing of the total disk I/O cost. In this paper, we define the spatio-temporal query clustering problem and give a data cubing approach (Q-cube), which is expected to be implemented in the cloud computing paradigm.