• Title/Summary/Keyword: Cluster-tree topology

Search Result 26, Processing Time 0.03 seconds

STO-based Cluster Header Election Algorithm (STO 기반 클러스터 헤더 선출 알고리즘)

  • Yoon, Jeong-Hyeon;Lee, Heon-Guk;Kim, Seung-Ku
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.587-590
    • /
    • 2019
  • This paper is about to improve the network life's reduction due to the deviation of sensor node and frequently change of network, the main problem of sensor network. The existing Scalable Topology Organization(STO)-based ZigBee Tree Topology Control Algorithm did not consider ways to consume power so the network lifetime is too short. Accordingly, per each round, electing a new parent node and consisting of the new network topology technique, The Cluster Header Selection, extending the network's overall lifetime. The OMNet++ Simulator yielded results from the existing STO Algorithm and the proposed Cluster Header Selection Technique in the same experimental environment, which resulted in an increase in overall network life by about 40% and an improvement of about 10% in performance in the remaining portion of the battery.

  • PDF

HRKT: A Hierarchical Route Key Tree based Group Key Management for Wireless Sensor Networks

  • Jiang, Rong;Luo, Jun;Wang, Xiaoping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.2042-2060
    • /
    • 2013
  • In wireless sensor networks (WSNs), energy efficiency is one of the most essential design considerations, since sensor nodes are resource constrained. Group communication can reduce WSNs communication overhead by sending a message to multiple nodes in one packet. In this paper, in order to simultaneously resolve the transmission security and scalability in WSNs group communications, we propose a hierarchical cluster-based secure and scalable group key management scheme, called HRKT, based on logic key tree and route key tree structure. The HRKT scheme divides the group key into cluster head key and cluster key. The cluster head generates a route key tree according to the route topology of the cluster. This hierarchical key structure facilitates local secure communications taking advantage of the fact that the nodes at a contiguous place usually communicate with each other more frequently. In HRKT scheme, the key updates are confined in a cluster, so the cost of the key updates is reduced efficiently, especially in the case of massive membership changes. The security analysis shows that the HRKT scheme meets the requirements of group communication. In addition, performance simulation results also demonstrate its efficiency in terms of low storage and flexibility when membership changes massively.

An EIBS Algorithm for Wireless Sensor Network with Life Time Prolongation (수명 연장 기능의 무선 센서 네트워크용 EIBS 알고리즘)

  • Bae, Shi-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.9
    • /
    • pp.65-73
    • /
    • 2014
  • Since Time synchronization is also critical in Wireless Sensor Networks (WSN) like other networks, a time synchronization protocol for WSN called IBS(Indirect-Broadcast Synchronization) has been already proposed in 2012. As IBS operates in cluster tree topology, network lifetime may be mainly shortened by cluster head node[s], which usually consumes more power than cluster member (i.e. non-cluster head) nodes. In this paper, I propose enhanced version of IBS (called EIBS) which saves overall energy and prolongs network lifetime by re-constructing partial cluster tree locally. Compared with other tree construction approaches, this tree reconstruction algorithm is not only simpler, but also more efficient in the light of overall power consumption and network lifetime.

IEEE 802.15.4e TSCH-mode Scheduling in Wireless Communication Networks

  • Ines Hosni;Ourida Ben boubaker
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.156-165
    • /
    • 2023
  • IEEE 802.15.4e-TSCH is recognized as a wireless industrial sensor network standard used in IoT systems. To ensure both power savings and reliable communications, the TSCH standard uses techniques including channel hopping and bandwidth reserve. In TSCH mode, scheduling is crucial because it allows sensor nodes to select when data should be delivered or received. Because a wide range of applications may necessitate energy economy and transmission dependability, we present a distributed approach that uses a cluster tree topology to forecast scheduling requirements for the following slotframe, concentrating on the Poisson model. The proposed Optimized Minimal Scheduling Function (OMSF) is interested in the details of the scheduling time intervals, something that was not supported by the Minimal Scheduling Function (MSF) proposed by the 6TSCH group. Our contribution helps to deduce the number of cells needed in the following slotframe by reducing the number of negotiation operations between the pairs of nodes in each cluster to settle on a schedule. As a result, the cluster tree network's error rate, traffic load, latency, and queue size have all decreased.

A Multi-Chain Based Hierarchical Topology Control Algorithm for Wireless Sensor Networks

  • Tang, Hong;Wang, Hui-Zhu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3468-3495
    • /
    • 2015
  • In this paper, we present a multi-chain based hierarchical topology control algorithm (MCHTC) for wireless sensor networks. In this algorithm, the topology control process using static clustering is divided into sensing layer that is composed by sensor nodes and multi-hop data forwarding layer that is composed by leader nodes. The communication cost and residual energy of nodes are considered to organize nodes into a chain in each cluster, and leader nodes form a tree topology. Leader nodes are elected based on the residual energy and distance between themselves and the base station. Analysis and simulation results show that MCHTC outperforms LEACH, PEGASIS and IEEPB in terms of network lifetime, energy consumption and network energy balance.

A Hierarchical Cluster Tree Based Address Assignment Method for Large and Scalable Wireless Sensor Networks (대규모 무선 센서 네트워크를 위한 계층적 클러스터 트리 기반 분산 주소 할당 기법)

  • Park, Jong-Jun;Jeong, Hoon;Hwang, So-Young;Joo, Seong-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12B
    • /
    • pp.1514-1523
    • /
    • 2009
  • It is well known that the current wireless sensor networks addressing methods do not work efficiently in networks more than a few hundred nodes. A standard protocol in ZigBee-Standard feature in ZigBee 2007 gives balanced tree based address assignment method with distributed manner. However, it was limited to cover less than hundreds of sensor nodes due to the wasteful use of available address space, because composed sensor networks usually make an unbalanced tree topology in the real deployment. In this paper, we proposed the hierarchical cluster tree based address assignment method to support large and scalable networks. This method provides unique address for each node with distributed manner and supports hierarchical cluster tree on-demand. Simulation results show that the proposed method reduces orphan nodes due to the address exhaustion and supports larger network with limited address space compared with the ZigBee distributed address assignment method defined in ZigBee-Standard feature in ZigBee 2007.

Adaptive Beacon Scheduling Algorithm to Reduce End-to-End Delay in Cluster-tree based LR-WPAN (클러스터-트리 기반 LR-WPAN에서 End-to-End 지연시간을 줄이기 위한 적응적 Beacon 스케줄링 알고리즘)

  • Kang, Jae-Eun;Park, Hak-Rae;Lee, Jong-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3B
    • /
    • pp.255-263
    • /
    • 2009
  • In this paper, we propose an adaptive beacon scheduling algorithm to control a reception period of actual data according to variation of amount of traffic in IEEE 802.15.4 LR-WPAN(Low Rate-Wireless Personal Area Network) with the cluster-tree topology. If a beacon interval is shortened, the amount of the traffic a node receives can be increased while consumption of the energy can be also increased. In this sense, we can achieve optimal on orgy consumption by controlling the beacon interval when the amount of data to be received is being decreased. The result of simulation using NS-2 shows that the proposed algorithm improves performances in terms of packet loss rate and end-to-end delay compared with algorithm using a fixed beacon interval. For a design of cluster-tree based LR-WPAN managing delay-sensitive services, the proposed algorithm and the associated results can be applied usefully.

The Dynamic Allocation Algorithm for Efficient Data Transmission in Wireless Sensor Network (무선 센서 네트워크에서 효율적인 데이터 전송을 위한 동적 할당 알고리즘)

  • Kim, Ji-Won;Yoon, Wan-Oh;Kim, Kang-Hee;Hong, Chang-Ki;Choi, Sang-Bang
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.3
    • /
    • pp.62-73
    • /
    • 2012
  • IEEE 802.15.4 standard which has low-speed, low-power, low-cost can be efficiently used in wireless sensor network environment. Among various topologies used in IEEE 802.15.4 standard, a cluster-tree topology which has many nodes in it, transmit delay, energy consumption and data loss due to traffic concentration around the sink node. In this paper, we propose the MRS-DCA algorithm that minimizes conflicts between packets for efficient data transmission, and dynamically allocates the active period for efficient use of limited energy. The MRS-DCA algorithm allocates RP(Reservation Period) to the active period of IEEE 802.15.4 and guarantees reliable data transmission by allocating RP and CAP dynamically which is based on prediction using EWMA. The comparison result shows that the MRS-DCA algorithm reduces power consumption by reducing active period, and increasing transmission rate by avoiding collision.

Detection of Entry/Exit Zones for Visual Surveillance System using Graph Theoretic Clustering (그래프 이론 기반의 클러스터링을 이용한 영상 감시 시스템 시야 내의 출입 영역 검출)

  • Woo, Ha-Yong;Kim, Gyeong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.6
    • /
    • pp.1-8
    • /
    • 2009
  • Detecting entry and exit zones in a view covered by multiple cameras is an essential step to determine the topology of the camera setup, which is critical for achieving and sustaining the accuracy and efficiency of multi-camera surveillance system. In this paper, a graph theoretic clustering method is proposed to detect zones using data points which correspond to entry and exit events of objects in the camera view. The minimum spanning tree (MST) is constructed by associating the data points. Then a set of well-formed clusters is sought by removing inconsistent edges of the MST, based on the concepts of the cluster balance and the cluster density defined in the paper. Experimental results suggest that the proposed method is effective, even for sparsely elongated clusters which could be problematic for expectation-maximization (EM). In addition, comparing to the EM-based approaches, the number of data required to obtain stable outcome is relatively small, hence shorter learning period.

Ad hoc Network for Dynamic Multicast Routing Protocol Using ADDMRP

  • Chi, Sam-Hyun;Kim, Sung-Uk;Lee, Kang-Whan
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.3
    • /
    • pp.209-214
    • /
    • 2007
  • In this paper, we proposed a new MANET (Mobile Ad hoc Networks) technology of routing protocol. The MANET has a mobility formation of mobile nodes in the wireless networks. Wireless network have two types architecture: the Tree based multicast and shared tree based. The two kind's architecture of general wireless networks have difficult to solve the problems existing in the network, such as connectivity, safety, and reliability. For this purpose, as using that ADDMRP (Ad hoc network Doppler effect-based for Dynamic Multicast Routing Protocol), this study gives the following suggestion for new topology through network durability and Omni-directional information. The proposed architectures have considered the mobility location, mobility time, density, velocity and simultaneous using node by Doppler effects and improved the performance.