• Title/Summary/Keyword: Cluster-Head

Search Result 426, Processing Time 0.028 seconds

Lifetime Improvement of Wireless Sensor Network using the Distribution of a Transmission Distance in the SEP (SEP에서 전송 거리 분배를 이용한 무선 센서 네트워크 수명 개선)

  • Lee, Chang-Hee;Lee, Jong-Yong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.5
    • /
    • pp.133-138
    • /
    • 2015
  • In this paper, we propose a method for improving the lifetime of the sensor network SEP through the wireless sensor network divided into two spaces by reducing the transmission distance of the cluster head in the layer in the distance. With reference to the position information of the node, the base station divides the layer based on the midpoint of the nearest node and the furthest distance away from the base station node. And the cluster head in the outer layer far from the base station is transmitted the data to the base station via the cluster head in the inner layer base station to transmit data. That is, we are proposed the layered SEP by reducing the transmission distance of the cluster head in the outer layer for the energy consumption to a minimum. The proposed algorithm is verified by comparison with the existing SEP.

Energy Efficient Cluster Head Selection and Routing Algorithm using Hybrid Firefly Glow-Worm Swarm Optimization in WSN

  • Bharathiraja S;Selvamuthukumaran S;Balaji V
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2140-2156
    • /
    • 2023
  • The Wireless Sensor Network (WSN), is constructed out of teeny-tiny sensor nodes that are very low-cost, have a low impact on the environment in terms of the amount of power they consume, and are able to successfully transmit data to the base station. The primary challenges that are presented by WSN are those that are posed by the distance between nodes, the amount of energy that is consumed, and the delay in time. The sensor node's source of power supply is a battery, and this particular battery is not capable of being recharged. In this scenario, the amount of energy that is consumed rises in direct proportion to the distance that separates the nodes. Here, we present a Hybrid Firefly Glow-Worm Swarm Optimization (HF-GSO) guided routing strategy for preserving WSNs' low power footprint. An efficient fitness function based on firefly optimization is used to select the Cluster Head (CH) in this procedure. It aids in minimising power consumption and the occurrence of dead sensor nodes. After a cluster head (CH) has been chosen, the Glow-Worm Swarm Optimization (GSO) algorithm is used to figure out the best path for sending data to the sink node. Power consumption, throughput, packet delivery ratio, and network lifetime are just some of the metrics measured and compared between the proposed method and methods that are conceptually similar to those already in use. Simulation results showed that the proposed method significantly reduced energy consumption compared to the state-of-the-art methods, while simultaneously increasing the number of functioning sensor nodes by 2.4%. Proposed method produces superior outcomes compared to alternative optimization-based methods.

An EIBS Algorithm for Wireless Sensor Network with Life Time Prolongation (수명 연장 기능의 무선 센서 네트워크용 EIBS 알고리즘)

  • Bae, Shi-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.9
    • /
    • pp.65-73
    • /
    • 2014
  • Since Time synchronization is also critical in Wireless Sensor Networks (WSN) like other networks, a time synchronization protocol for WSN called IBS(Indirect-Broadcast Synchronization) has been already proposed in 2012. As IBS operates in cluster tree topology, network lifetime may be mainly shortened by cluster head node[s], which usually consumes more power than cluster member (i.e. non-cluster head) nodes. In this paper, I propose enhanced version of IBS (called EIBS) which saves overall energy and prolongs network lifetime by re-constructing partial cluster tree locally. Compared with other tree construction approaches, this tree reconstruction algorithm is not only simpler, but also more efficient in the light of overall power consumption and network lifetime.

A Cluster Based Multi-channel Assignment Scheme for Adaptive Tactical Wireless Mesh Network (무선 메쉬 네트워크의 군 환경 적용을 위한 클러스터 기반 멀티채널 할당 기법)

  • Kim, Young-An
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.880-887
    • /
    • 2011
  • The Wireless Mesh Network(WMN) technology is able to provide an infrastructure for isolated islands, in which it is difficult to install cables or wide area such as battlefield. Therefore, WMN is frequently used to satisfy needs for internet connection and active studies and research on them are in progress. However, as a result of increase in number of hops under hop-by-hop communication environment has caused a significant decrease in throughput and an increase in delay. Considering the heavy traffic of real-time data, such as voice or moving pictures to adaptive WMN, in a military environment. Such phenomenon might cause an issue in fairness index. In order to resolve this issue, we proposed a Cluster Based Multi-channel Assignment Scheme(CB-MAS) for adaptive tactical wireless mesh network. In the CB-MAS, the communication between the Cluster-Head(CH) and cluster number nodes uses a channel has no effect on channels being used by the inter-CH links. Therefore, the CB-MAS can minimize the interference within multi-channel environments. Our Simulation results showed that CB-MAS achieves improved the throughput and fairness index in WMN.

Energy Efficient Cooperative LEACH Protocol for Wireless Sensor Networks

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.358-365
    • /
    • 2010
  • We develop a low complexity cooperative diversity protocol for low energy adaptive clustering hierarchy (LEACH) based wireless sensor networks. A cross layer approach is used to obtain spatial diversity in the physical layer. In this paper, a simple modification in clustering algorithm of the LEACH protocol is proposed to exploit virtual multiple-input multiple-output (MIMO) based user cooperation. In lieu of selecting a single cluster-head at network layer, we proposed M cluster-heads in each cluster to obtain a diversity order of M in long distance communication. Due to the broadcast nature of wireless transmission, cluster-heads are able to receive data from sensor nodes at the same time. This fact ensures the synchronization required to implement a virtual MIMO based space time block code (STBC) in cluster-head to sink node transmission. An analytical method to evaluate the energy consumption based on BER curve is presented. Analysis and simulation results show that proposed cooperative LEACH protocol can save a huge amount of energy over LEACH protocol with same data rate, bit error rate, delay and bandwidth requirements. Moreover, this proposal can achieve higher order diversity with improved spectral efficiency compared to other virtual MIMO based protocols.

A Sensing-aware Cluster Head Selection Algorithm for Wireless Sensor Networks (무선 센서 네트워크를 위한 센싱 인지 클러스터 헤드 선택 알고리즘)

  • Jung Eui-Eyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.5 s.37
    • /
    • pp.141-150
    • /
    • 2005
  • Wireless Sensor Networks have been rapidly developed due to the advances of sensor technology and are expected to be applied to various applications in many fields. In Wireless Sensor Networks, schemes for managing the network energy-efficiently are most important. For this purpose, there have been a variety of researches to suggest routing protocols. However, existing researches have ideal assumption that all sensor nodes have sensing data to transmit. In this paper, we designed and implemented a sensing-aware cluster selection algorithm based on LEACH-C for the sensor network in which part of sensors have sensing data. We also simulated proposed algorithm on several network situation and analyzed which situation is suitable for the algorithm. By the simulation result, selecting cluster head among the sensing nodes is most energy-efficient and the result shows application of sensing-awareness in cluster head selection when not all sensors have sensing data.

  • PDF

Tree-Based Clustering Protocol for Energy Efficient Wireless Sensor Networks (에너지 효율적 무선 센서 네트워크를 위한 트리 기반 클러스터링 프로토콜)

  • Kim, Kyung-Tae;Youn, Hee-Yong
    • The KIPS Transactions:PartC
    • /
    • v.17C no.1
    • /
    • pp.69-80
    • /
    • 2010
  • Wireless sensor networks (WSN) consisting of a large number of sensors aim to gather data in a variety of environments and are being used and applied to many different fields. The sensor nodes composing a sensor network operate on battery of limited power and as a result, high energy efficiency and long network lifetime are major goals of research in the WSN. In this paper we propose a novel tree-based clustering approach for energy efficient wireless sensor networks. The proposed scheme forms the cluster and the nodes in a cluster construct a tree with the root of the cluster-head., The height of the tree is the distance of the member nodes to the cluster-head. Computer simulation shows that the proposed scheme enhances energy efficiency and balances the energy consumption among the nodes, and thus significantly extends the network lifetime compared to the existing schemes such as LEACH, PEGASIS, and TREEPSI.

An Authentication Protocol-based Multi-Layer Clustering for Mobile Ad Hoc Networks (이동 Ad Hoc 망을 위한 다중 계층 클러스터링 기반의 인증 프로토콜)

  • Lee Keun-Ho;Han Sang-Bum;Suh Heyi-Sook;Lee Sang-Keun;Hwang Chong-Sun
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.4
    • /
    • pp.310-323
    • /
    • 2006
  • In this paper, we describe a secure cluster-routing protocol based on a multi-layer scheme in ad hoc networks. We propose efficient protocols, Authentication based on Multi-layer Clustering for Ad hoc Networks (AMCAN), for detailed security threats against ad hoc routing protocols using the selection of the cluster head (CH) and control cluster head (CCH) using a modification of cluster-based routing ARCH and DMAC. This protocol provides scalability of Shadow Key using threshold authentication scheme in ad hoc networks. The proposed protocol comprises an end-to-end authentication protocol that relies on mutual trust between nodes in other clusters. This scheme takes advantage of Shadow Key using threshold authentication key configuration in large ad hoc networks. In experiments, we show security threats against multilayer routing scheme, thereby successfully including, establishment of secure channels, the detection of reply attacks, mutual end-to-end authentication, prevention of node identity fabrication, and the secure distribution of provisional session keys using threshold key configuration.

A Stable Clustering Scheme Based on Node Mobility for Mobile Ad Hoc Networks (모바일 애드 혹 네트워크에서 이동성을 고려한 안정적인 클러스터링 기법)

  • Kim, Hyek-Su;Hwang, Jun-Ho;Yoo, Myung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5B
    • /
    • pp.480-488
    • /
    • 2009
  • A mobile ad-hoc network is an autonomous collection of wireless mobile nodes that organizes a temporary network without any network infrastructure. Due to node mobility, it is a challenging task to maintain the network topology. In this paper, we propose a stable clustering algorithm that uses node mobility for cluster formation. In the proposed algorithm, the node mobility is measured by counting the number of nodes entering into/leaving from its transmission range. The node having the lowest mobility is selected as a cluster head. For topology maintenance with reduced control overhead, the cluster head adaptively controls the broadcasting period of hello message to the measured node mobility. Through computer simulations, it is verified that the proposed algorithm outperforms previous clustering algorithms in terms of control overhead, the rate of node mobility changes and the number of cluster head changes.

A Dual-layer Energy Efficient Distributed Clustering Algorithm for Wireless Sensor Networks (무선 센서 네트워크를 위한 에너지 효율적인 이중 레이어 분산 클러스터링 기법)

  • Yeo, Myung-Ho;Kim, Yu-Mi;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.35 no.1
    • /
    • pp.84-95
    • /
    • 2008
  • Wireless sensor networks have recently emerged as a platform for several applications. By deploying wireless sensor nodes and constructing a sensor network, we can remotely obtain information about the behavior, conditions, and positions of objects in a region. Since sensor nodes operate on batteries, energy-efficient mechanisms for gathering sensor data are indispensable to prolong the lifetime of a sensor network as long as possible. In this paper, we propose a novel clustering algorithm that distributes the energy consumption of a cluster head. First, we analyze the energy consumption if cluster heads and divide each cluster into a collection layer and a transmission layer according to their roles. Then, we elect a cluster head for each layer to distribute the energy consumption of single cluster head. In order to show the superiority of our clustering algorithm, we compare it with the existing clustering algorithm in terms of the lifetime of the sensor network. As a result, our experimental results show that the proposed clustering algorithm achieves about $10%{\sim}40%$ performance improvements over the existing clustering algorithms.