• 제목/요약/키워드: Cluster validity

검색결과 161건 처리시간 0.024초

A Cluster validity Index for Fuzzy Clustering

  • Lee, Haiyoung
    • 한국지능시스템학회논문지
    • /
    • 제9권6호
    • /
    • pp.621-626
    • /
    • 1999
  • In this paper a new cluster validation index which is heuristic but able to eliminate the monotonically decreasing tendency occurring in which the number of cluster c gets very large and close to the number of data points n is proposed. We review the FCM algorithm and some conventional cluster validity criteria discuss on the limiting behavior of the proposed validity index and provide some numerical examples showing the effectiveness of the proposed cluster validity index.

  • PDF

클러스터 타당성 평가기준을 이용한 최적의 클러스터 수 결정을 위한 고속 탐색 알고리즘 (Fast Search Algorithm for Determining the Optimal Number of Clusters using Cluster Validity Index)

  • 이상욱
    • 한국콘텐츠학회논문지
    • /
    • 제9권9호
    • /
    • pp.80-89
    • /
    • 2009
  • 클러스터링 알고리즘에서 최적의 클러스터 수를 결정하기 위한 효율적인 고속 탐색 알고리즘을 소개한다. 제안하는 방법은 클러스터링 적합도의 척도로 사용되는 클러스터 타당성 평가기준을 토대로 한다. 데이터 집합에 클러스터링 프로세스를 진행하여 최적의 클러스터 형상에 도달하게 되면 클러스터 타당성 평가기준은 최대 혹은 최소값을 가질 것으로 기대한다. 본 논문에서는 최적의 클러스터 개수를 찾기 위한 고속의 비소모적 탐색 방법을 설계하고 실제 클러스터링과 접목한다. 제안하는 알고리즘은 k-means++ 클러스터링 알고리즘에 적용하였고, 클러스터 타당성 평가기준으로써 CB 및 PBM 타당성 평가기준 방법을 사용하였다. 몇몇의 가상 데이터 집합과 실제 데이터 집합에 실험한 결과, 제안하는 방법은 정확도의 손실 없이 계산 효율을 획기적으로 증가시킴을 보여주었다.

Nearest neighbor and validity-based clustering

  • Son, Seo H.;Seo, Suk T.;Kwon, Soon H.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권3호
    • /
    • pp.337-340
    • /
    • 2004
  • The clustering problem can be formulated as the problem to find the number of clusters and a partition matrix from a given data set using the iterative or non-iterative algorithms. The author proposes a nearest neighbor and validity-based clustering algorithm where each data point in the data set is linked with the nearest neighbor data point to form initial clusters and then a cluster in the initial clusters is linked with the nearest neighbor cluster to form a new cluster. The linking between clusters is continued until no more linking is possible. An optimal set of clusters is identified by using the conventional cluster validity index. Experimental results on well-known data sets are provided to show the effectiveness of the proposed clustering algorithm.

자기조직화지도에서 연결강도에 기반한 새로운 군집타당성지수 (A new cluster validity index based on connectivity in self-organizing map)

  • 김상민;김재직
    • 응용통계연구
    • /
    • 제33권5호
    • /
    • pp.591-601
    • /
    • 2020
  • 자기조직화지도는 고차원의 원자료를 노드들로 이루어진 저차원의 공간으로 투영하는 비지도학습 방법이다. 이 방법은 고차원의 자료를 노드들을 사용하여 2 또는 3차원의 공간에서 시각화할 수 있고, 이를 통해 자료의 특성을 탐색하는데 유용하다. 자료의 구조를 파악하기 위해 종종 노드들에 대한 군집분석을 시도하는데, 군집분석의 중요한 문제중 하나는 군집의 개수를 결정하는 것이다. 이 문제를 해결하기 위해 다양한 군집타당성지수들이 지금까지 개발되어 왔고, 이러한 지수들은 자기조직화지도의 노드들의 군집분석에 직접적으로 적용될 수 있다. 그러나, 자기조직화 지도가 원자료의 위상적 특성을 저차원 공간에 반영할 수 있다는 특징을 갖는데 반해, 이러한 일반적인 지수들은 이를 고려하지 않는 문제가 있다. 이에 본 연구에서는 원자료의 위상적 특성을 고려한 노드들 사이의 연결강도를 기반으로 하는 군집타당성지수를 제안한다. 이 새로운 군집타당성지수의 성능은 모의실험을 통해 기존의 군집타당성지수들과의 비교되고 검증된다.

K-means 알고리즘 기반 클러스터링 인덱스 비교 연구 (A Performance Comparison of Cluster Validity Indices based on K-means Algorithm)

  • 심요성;정지원;최인찬
    • Asia pacific journal of information systems
    • /
    • 제16권1호
    • /
    • pp.127-144
    • /
    • 2006
  • The K-means algorithm is widely used at the initial stage of data analysis in data mining process, partly because of its low time complexity and the simplicity of practical implementation. Cluster validity indices are used along with the algorithm in order to determine the number of clusters as well as the clustering results of datasets. In this paper, we present a performance comparison of sixteen indices, which are selected from forty indices in literature, while considering their applicability to nonhierarchical clustering algorithms. Data sets used in the experiment are generated based on multivariate normal distribution. In particular, four error types including standardization, outlier generation, error perturbation, and noise dimension addition are considered in the comparison. Through the experiment the effects of varying number of points, attributes, and clusters on the performance are analyzed. The result of the simulation experiment shows that Calinski and Harabasz index performs the best through the all datasets and that Davis and Bouldin index becomes a strong competitor as the number of points increases in dataset.

광주 광산업 클러스터 효과에 관한 연구 : 조직의 흡수역량과 기업성과에 미치는 영향에 관한 실증연구 (An Empirical Study on the Korean Photonics Industrial Cluster Effects : Focusing on Absorptive Capacity and Corporate Performance)

  • 배재권;구철모
    • Journal of Information Technology Applications and Management
    • /
    • 제19권2호
    • /
    • pp.117-134
    • /
    • 2012
  • Cluster industries are geographically concentrated and inter-connected by the flow of goods and services, which is stronger than the flow linking them to the rest of the economy. Photonics industries are one of the fastest growing high-tech industries in the world today. Especially, the city of Gwangju(South Korea) industrial cluster, a specialized complex in photonics industry, produced remarkable results in developing high-quality technologies since it launched the cluster program in 2005. Gwangju photonics industrial cluster will be ranked top level of the world photonics industry. In this sense, this study is aimed at proposing a new research model in which corporate performance influence factors of photonics industrial cluster (i.e., business environment, cooperative relationship, and industry-university-research institute partnership) affect absorptive capacity positively, leading to corporate performance eventually. This study developed a research model to explain the Korean photonics industrial cluster effects, and collected 91 survey responses from photonics based company managers in industrial cluster complex. To prove the validity of the proposed research model, PLS analysis is applied with valid 91 questionnaires. By employing PLS technique, the measurement reliability and validity of research variables are tested and the path analysis is conducted to do the hypothesis testing. In brief, the finding of this study suggests that corporate performance influence factors of photonics industrial cluster affect absorptive capacity positively, and corporate performance as well.

클러스터링 균형을 사용하여 최적의 클러스터 개수를 결정하기 위한 효율적인 휴리스틱 (An efficient heuristics for determining the optimal number of cluster using clustering balance)

  • 이상욱
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2009년도 춘계 종합학술대회 논문집
    • /
    • pp.792-796
    • /
    • 2009
  • 데이터 클러스터링 분야에서 최적의 클러스터 개수를 추정하는 것은 매우 중요한 일이다. 그것은 클러스터링의 적합성을 판단할 기준을 정하고 그 적합성을 극대화 하는 최적의 클러스터의 개수를 찾는 것이다. 본 논문에서는 클러스터의 적합성을 판단할 기준으로써 클러스터링 균형을 사용하여 최적의 클러스터 개수를 찾기 위한 효율적인 휴리스틱 방법을 제안하였다. k-means 사용하여 가상 및 실제 데이터 셋에 적용한 결과, 제안한 알고리즘이 계산효율 측면에서 우수함을 확인할 수 있었다.

  • PDF

퍼지 성능 측정자를 결합한 최적 클러스터 분석방법 (An Optimal Cluster Analysis Method with Fuzzy Performance Measures)

  • 이현숙;오경환
    • 한국지능시스템학회논문지
    • /
    • 제6권3호
    • /
    • pp.81-88
    • /
    • 1996
  • 클러스터링은 주어진 데이타 집합의 패턴을 비슷한 성질을 가지는 그룹으로 나누어 패턴 상호간의 관계를 정립하기 위한 방법론이다. 이러한 클러스터링 기법을 위하여 많은 알고리즘이 개발되었고, 패턴인식과 영상처리 등의 여러 공학영역에 적용되어 왔다. 대부분의 실세계 데이타는 그 경계가 명확하지 않으므로 그 특성을 보다 정확히 반영하기 위하여 퍼지이론이 도입되었다.이와 같은 클러스터 분석 방법은 보다 적절히 으용하기 위하여 클러스터링의 적절성을 평가하기 위한 방법론과 함께 연구되어야 한다. 이를 위하여 각 데이타 패턴이 얼마나 잘 분류되었는지를 수학적으로 계산하기 위한 함수들이 제안되었다. 그러나 클로스터 타당성 문제는 주어지 클러스터링 방법론의 특성, 그 알고리즘에서 사용한 파라메터의 성질, 주어진 입력 데이타 집합의 특성 등 여러 복잡한 상황을 포함하고 있으므로 기존의 연구에서와 같이 하나의 함수를 이용하여 해결하기는 어렵다. 그러므로 본 논문에서는 기존에 연구되어온 타당성 측정 함수를 조사하고 그의 단점을 고찰하여 이를 해결하기 위한 방법으로 4가지성능 측정자를 제안하고 이의 결합에 의하여 형성된 클러스터 타당성의 정도를 구하는 방법론을 제시하고자 한다. 또한 이러한 방법은 퍼지 클러스터링을 위한 학습 알고리즘과 결함하여 클러스터의 수나 데이타의 분포에 대한 정보없이 최적 클러스터를 찾아주는 방법에 응용될 수 있음을 보인다.

  • PDF

음성학을 토대로 한 자음군 습득 모형 (Phonetically Based Consonant Cluster Acquisition Model)

  • 권보영
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2007년도 한국음성과학회 공동학술대회 발표논문집
    • /
    • pp.109-113
    • /
    • 2007
  • Second language learners' variable degree of production difficulty according to the cluster type has previously been accounted for in terms of sonority distance between adjacent segments. As an alternative to this previous model, I propose a Phonetically Based Consonant Cluster Acquisition Model (PCCAM) in which consonant cluster markedness is defined based on the articulatory and perceptual factors associated with each consonant sequence. The validity of PCCAM has been tested through Korean speakers' production of English consonant clusters.

  • PDF

클러스터간 중첩성과 분리성을 이용한 퍼지 분할의 평가 기법 (A Cluster Validity Index Using Overlap and Separation Measures Between Fuzzy Clusters)

  • 김대원;이광형
    • 한국지능시스템학회논문지
    • /
    • 제13권4호
    • /
    • pp.455-460
    • /
    • 2003
  • 본 논문에서는 퍼지 클러스터링 알고리즘에 의해 구해진 퍼지 분할에 대한 최적 클러스터 수를 결정하는 방법을 제안한다. 제안된 척도는 퍼지 클러스터들간의 중첩성과 분리성을 이용한다. 중첩성은 클러스터간 인접도를 이용하여 계산하며, 분리성은 데이터에 대한 상관성 정도로 나타낸다. 따라서 중첩성이 낮고 분리성이 높을수록 좋은 클러스터 결과라고 할 수 있다. 표준 데이터 집합을 대상으로 기존의 척도들과 비교 실험함으로써 제안된 척도의 신뢰성을 검증하였다.