This paper present box feature estimation from LiDAR point cluster using maximum likelihood Method. Previous LiDAR tracking method for autonomous driving shows high accuracy about velocity and heading of point cluster. However, Assuming the average position of a point cluster as the vehicle position has a lower accuracy than ground truth. Therefore, the box feature estimation algorithm to improve position accuracy of autonomous driving perception consists of two procedures. Firstly, proposed algorithm calculates vehicle candidate position based on relative position of point cluster. Secondly, to reflect the features of the point cluster in estimation, the likelihood of the particle scattered around the candidate position is used. The proposed estimation method has been implemented in robot operating system (ROS) environment, and investigated via simulation and actual vehicle test. The test result show that proposed cluster position estimation enhances perception and path planning performance in autonomous driving.
Balanced half sample method is a simple variance estimation method for complex sampling designs. Since it is simple and flexible, it has been widely used in large scale sample surveys. However, the usual BHS method overestimate the true variance in without replacement sampling and two-stage cluster sampling. Focusing on this point , we proposed an unbiased BHS variance estimator in a stratified two-stage cluster sampling and then described an implementation method of the proposed estimator. Finally, partially BHS design is explained as a tool of reducing the number of replications of the proposed estimator.
임베디드 SW는 제품 내장형 SW라는 특징으로 인해 임베디드 SW를 탑재한 제품의 시장 규모가 아닌 임베디드 SW 만의 시장을 명확히 파악한 자료는 거의 없다. 본 논문에서는 임베디드 SW만의 시장규모를 최대한 정확히 알아내기 위해 생산액 규모를 추정하는 방법을 사용하였다. 임베디드 SW 시장규모 추정에 적합한 산업분류체계를 도출하였고 이에 따른 산업 분류별 시장 규모를 추정하였다. 또한, 임베디드 SW의 산업 분류별 비중을 산출하고 최종적으로 임베디드 S/W의 시장 규모를 추정하였다. 임베디드 산업 분류별 SW의 시장 규모를 추정한 결과 산업자동화, 군사, 항공, 우주, 사무자동화 순으로 추정되었고, 임베디드 SW의 부가가치는 약 27조로 나타났다.
Communications for Statistical Applications and Methods
/
제22권6호
/
pp.625-637
/
2015
We develop a Bayesian clustering procedure based on a Dirichlet process prior with cluster specific random effects. Gibbs sampling of a normal mixture of linear mixed regressions with a Dirichlet process was implemented to calculate posterior probabilities when the number of clusters was unknown. Our approach (unlike its counterparts) provides simultaneous partitioning and parameter estimation with the computation of the classification probabilities. A Monte Carlo study of curve estimation results showed that the model was useful for function estimation. We find that the proposed Dirichlet process mixture model with cluster specific random effects detects clusters sensitively by combining vague edges into different clusters. Examples are given to show how these models perform on real data.
For the state estimation problem, the weighted least squares (WLS) method and the fast decoupled method are widely used at present. However, these algorithms can converge to local optimal solutions. Recently, modern heuristic optimization methods such as Particle Swarm Optimization (PSO) have been introduced to overcome the disadvantage of the classical optimization problem. However, heuristic optimization methods based on populations require a lengthy computing time to find an optimal solution. In this paper, we used PSO to search for the optimal solution of state estimation in power systems. To overcome the shortcoming of heuristic optimization methods, we proposed parallel processing of the PSO algorithm based on the PC cluster system. the proposed approach was tested with the IEEE-118 bus systems. From the simulation results, we found that the parallel PSO based on the PC cluster system can be applicable for power system state estimation.
센서 네트워크에서 센서 노드는 제한된 계산 능력, 제한된 양의 에너지, 제한된 기억 능력을 지닌다. 이에 따라 센서 네트워크 설계 시 가장 중요하게 고려할 사항은 에너지 효율성이다. 어떻게 무선 센서 네트워크의 수명을 연장시킬 것인가는 최근 널리 논의되고 있는 사항인데, 에너지 소모, 규모 가변성 및 부하의 분배 측면에서 가장 효율적인 접근 방법 중 하나는 클러스터링 기법이다. 이 기법에서는 클러스터 헤드라 불리는 데이터를 모아 목적지로 보내는 역할의 노드를 주기적으로 변경할 필요가 있는데, 그 이유는 저에너지 소모 및 부하의 분배를 위해서이다. 이 논문에서는 에너지에 기반한 클러스터 헤드 선정 기법과 에너지 소모를 줄이는 위치 예상에 기반한 클러스터 이주 기법을 제안하고, 시뮬레이션을 통해 네트워크의 수명 측면에서 기존 기법에 비해 약 3배 가량 개선됨을 보였다.
Communications for Statistical Applications and Methods
/
제6권1호
/
pp.107-116
/
1999
We propose a sample design which minimize Bayes risk for cluster smpling in sampling inspection. We treat a pilot sample and an additional sample size as random variable. In addition we compute an appropriate cluster size for handling over-dispersion.
1차원 클러스터 기반의 시퀀스 등화기(1-D CBSE)는 시퀀스 등화기(MLSE)가 갖는 계산상의 복잡성을 효율적으로 해결하고 비선형 채널에서의 뛰어난 성능 개선을 가져온다. 본 논문에서는 다중 경로 페이딩 채널 추정에 대응하는 1-D CBSE의 클러스터 중심을 추정하기 위한 향상된 훈련 시퀀스 구성 기법을 제안하였다. 새로이 제안된 등화기는 기존의 방식에서 갖는 문제점을 해결하고, 보다 짧은 길이의 훈련 시퀀스를 이용함으로써 대역폭 효율을 증대시키는 향상된 결과를 가져왔다. 제안된 알고리즘의 우수성은, 기존의 방법과 제안된 최적의 훈련시퀀스를 적용한 1-D클러스터 기반의 새로운 중심 추정을 통한 방법을 비교를 통하여 보였다. 특히, 컴퓨터 시뮬레이션에 의한 심볼 에러율(SER)에 기반을 둔 비교 분석을 통하여 살펴보았다.
초광대역 무선 통신에서 불규칙 각도 퍼짐이 발생하는 초광대역 옥내 환경에 적합한 새로운 신호 모형을 제안하고 군집된 초광대역 신호의 도착 방향(AOA)을 추정한다. 제안된 모형에 적합한 부공간 추정기법을 적용하여 수신된 초광대역 군집 신호의 신호 도착 방향과 퍼짐모수의 추정치를 얻는다. 제안된 모형과 추정기법은 컴퓨터 모의실험으로 검증되며 추정 오차의 성능도 분석한다.
Journal of information and communication convergence engineering
/
제14권4호
/
pp.215-221
/
2016
We consider a design of a combined quantizer and estimator for distributed systems wherein each node quantizes its measurement without any communication among the nodes and transmits it to a fusion node for estimation. Noting that the quantization partitions minimizing the estimation error are not independently encoded at nodes, we focus on the parameter regions created by the partitions and propose a cluster-based quantization algorithm that iteratively finds a given number of clusters of parameter regions with each region being closer to the corresponding codeword than to the other codewords. We introduce a new metric to determine the distance between codewords and parameter regions. We also discuss that the fusion node can perform an efficient estimation by finding the intersection of the clusters sent from the nodes. We demonstrate through experiments that the proposed design achieves a significant performance gain with a low complexity as compared to the previous designs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.