• Title/Summary/Keyword: Clouds

Search Result 1,009, Processing Time 0.023 seconds

Efficient simulation method for a gas inflow to the central molecular zone

  • Shin, Jihye;Kim, Sungsoo S.;Baba, Junichi;Saitoh, Takayuki R.;Chun, Kyungwon;Hozumi, Shunsuke
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.59.1-59.1
    • /
    • 2015
  • We present hydrodynamic simulations of gas clouds that inflowing from the disk to a few hundred parsec region of the Milky Way. Realistic Galactic structures are included in our simulations by thousands of multipole expansions that describe 6.4 million stellar particles of a self-consistent Galaxy simulation (Baba, Saitoh & Wada, in prep.). We find that a hybrid multipole expansion model with two different basis sets and a thick disk correction well reproduces the overall structures of the Milky Way. We find that the nuclear ring evolves into 240 pc at T~1500 Myr, regardless of the initial size. For most of simulation runs, gas inflow rate to the nuclear region is equilibrated as ~0.02 Msun/yr, and thus accumulated gas mass and star formation activity is stabilized as $6{\times}10^7Msun$ and ~0.02M/yr, respectively. These stabilized values are in a good agreement with estimations for the CMZ. The nuclear ring is off-centered to the Galactic center by the lopsided central mass distribution of the Galaxy model, and thus an asymmetric mass distribution is arose accordingly. The lopsidedness also leads the nuclear ring to be tilted to the Galactic plane and to precess along the Galaxy rotation. In early evolutionary stage when gas clouds start to inflow and form the nuclear ring, the z-directional oscillations of the gas clouds results in the twisted, infinity-shaped nuclear ring. Since the infinity-shaped feature is transient only for first 100 Myr, the current infinity-shape observed in the CMZ may indicate that the CMZ forms quite recently.

  • PDF

Analyses of the OMI Cloud Retrieval Data and Evaluation of Its Impact on Ozone Retrieval (OMI 구름 측정 자료들의 비교 분석과 그에 따른 오존 측정에 미치는 영향 평가)

  • Choi, Suhwan;Bak, Juseon;Kim, JaeHwan;Baek, KangHyun
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.117-127
    • /
    • 2015
  • The presences of clouds significantly influence the accuracy of ozone retrievals from satellite measurements. This study focuses on the influence of clouds on Ozone Monitoring instrument (OMI) ozone profile retrieval based on an optimal estimation. There are two operational OMI cloud products; OMCLDO2, based on absorption in $O_2-O_2$ at 477 nm, and OMCLDRR, based on filling in Fraunhofer lines by rotational Raman scattering (RRS) at 350 nm. Firstly, we characterize differences between $O_2-O_2$ and RRS effective cloud pressures using MODIS cloud optical thickness (COT), and then compare ozone profile retrievals with different cloud input data. $O_2-O_2$ cloud pressures are significantly smaller than RRS by ~200 hPa in thin clouds, which corresponds to either low COT or cloud fraction (CF). On the other hand, the effect of Optical centroid pressure (OCP) on ozone retrievals becomes significant at high CF. Tropospheric ozone retrievals could differ by up to ${\pm}10$ DU with the different cloud inputs. The layer column ozone below 300 hPa shows the cloud-induced ozone retrieval error of more than 20%. Finally, OMI total ozone is validated with respect to Brewer ground-based total ozone. A better agreement is observed when $O_2-O_2$ cloud data are used in OMI ozone profile retrieval algorithm. This is distinctly observed at low OCP and high CF.

An Analysis of 'Chunsansoesong' by Mi Fu - Underlining the Poem within the Painting - (미불의 춘산서송도<春山瑞松圖> 분석 -'화중유시 (畵中有詩)' 의 특성을 중심으로-)

  • Wang Hyung-Yul
    • Journal of Science of Art and Design
    • /
    • v.6
    • /
    • pp.100-118
    • /
    • 2004
  • Mi Fu, who was associated with Wen Tong, invented the Mijoem Technique (Dotting Technique) in landscape painting with his son Mi Youren. His landscapes, which referred to Dong Yuan's landscape technique and was inspired by the scenery of Jiang Nan, illustrate the mood of a cloud-covered foggy landscape by liberally applying dots with ink. 'Chunsansoesong' which is considered done by Mi Fu, clearly shows the virtues of ink painting's spreading, absorbing and omission techniques. This simply rendered landscape - whose mountains and hills are wrapped in both clouds and fog - displays exquisiteness by using small dots. In 'Chunsansoesong', the characteristics of Song painting: a 'vital energy', a 'poem within the painting', a 'beauty of margin', a 'beauty of one brush stroke, and a 'display of inner meanings' are implicatively expressed This is because it's simple but connotatively delineative. There is the characteristic of a 'poem within the painting' when analyzing the both fragmented and combined 'Chunsansoesong'. The margins support an imaginative space as the height of the mountains get higher which result in deepening both the width and depth of the landscape space. Furthermore, the soft thickness of ink, clouds, pine trees, and pavilion evoke delineative feelings and a desire to write a poem Every thing in 'Chunsansoesong' is enveloped in both clouds and fog regardless of its distance and this delivers boundless feelings of Oriental mystery and urges a desire for 'writing a poem'. The pavilion that faces the cloud and fog-bound mountains especially flames the poetic urge further by inducing viewers' poetic imaginations. As we reviewed above, 'Chunsansoesong's cloud and fog-covered landscape is a good example that clearly showcases the characteristics of a 'Poem within the Painting'.

  • PDF

A Comparison of 3D R-tree and Octree to Index Large Point Clouds from a 3D Terrestrial Laser Scanner (대용량 3차원 지상 레이저 스캐닝 포인트 클라우드의 탐색을 위한 3D R-tree와 옥트리의 비교)

  • Han, Soo-Hee;Lee, Seong-Joo;Kim, Sang-Pil;Kim, Chang-Jae;Heo, Joon;Lee, Hee-Bum
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.1
    • /
    • pp.39-46
    • /
    • 2011
  • The present study introduces a comparison between 3D R-tree and octree which are noticeable candidates to index large point clouds gathered from a 3D terrestrial laser scanner. A query method, which is to find neighboring points within given distances, was devised for the comparison, and time lapses for the query along with memory usages were checked. From tests conducted on point clouds scanned from a building and a stone pagoda, it was shown that octree has the advantage of fast generation and query while 3D R-tree is more memory-efficient. Both index and leaf capacity were revealed to be ruling factors to get the best performance of 3D R-tree, while the number of level was of oetree.

Image Registration of Cloudy Pushbroom Scanner Images (구름을 포함한 푸쉬브룸 스캐너 영상의 밴드간 상호등록)

  • Lee, Won-Hee;Yu, Su-Hong;Heo, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • Since PAN(panchromatic) and MS(multispectral) imagery of pushbroom scanner have the offset between PAN and MS CCD(charge coupled device) in the focal plane, PAN and MS images are acquired at different time and angle. Since clouds are fast moving objects, they should lead mis-registration problem with wrong matching points on clouds. The registration of cloudy imagery to recognize and remove the contamination of clouds can be categorized into three classes: (1) cloud is considered as nose and removed (2) employing multi-spectral imagery (3) using multi-temporal imagery. In this paper, method (1) and (3) are implemented and analysed with cloudy pushbroom scanner images.

English Bible Text Visualization Using Word Clouds and Dynamic Graphics Technology (단어 구름과 동적 그래픽스 기법을 이용한 영어성경 텍스트 시각화)

  • Jang, Dae-Heung
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.3
    • /
    • pp.373-386
    • /
    • 2014
  • A word cloud is a visualization of word frequency in a given text. The importance of each word is shown in font size or color. This plot is useful for quickly perceiving the most prominent words and for locating a word alphabetically to determine its relative prominence. With dynamic graphics, we can find the changing pattern of prominent words and their frequencies according to the changing selection of chapters in a given text. We can define the word frequency matrix. In this matrix, rows are chapters in text and columns are ranks corresponding to word frequency about the words in the text. We can draw the word frequency matrix plot with this matrix. Dynamic graphic can indicate the changing pattern of the word frequency matrix according to the changing selection of the range of ranks of words. We execute an English Bible text visualization using word clouds and dynamic graphics technology.

Statistical Analysis for Turbulence Properties of the Orion Molecular Cloud

  • Yun, Hyeong-Sik;Lee, Jeong-Eun;Choi, Yunhee;Lee, Seokho;Choi, Minho;Kang, Hyunwoo;Tatematsu, Ken'ichi;Offner, Stella S.R.;Gaches, Brandt A.L.;Heyer, Mark H.;Evans, Neal J. II;Yang, Yao-Lun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.55.5-56
    • /
    • 2016
  • Turbulence plays an important role in molecular clouds. However, the properties of turbulence are poorly understood. In order to study the influence of turbulence in molecular clouds, we need to sample the turbulent properties in the full range of scales down to sonic scale. We mapped the $20^{\prime}{\times}60^{\prime}$ area covering the Orion Molecular Cloud (OMC) 1-4 region in HCN 1-0 and HCO+ 1-0 with Taeduk Radio Astronomy Observatory (TRAO) 14-m telescope as part of the TRAO key science program, "Mapping turbulent properties of star-forming molecular clouds down to the sonic scale (PI: Jeong-Eun Lee)". In addition, we combine our TRAO data with other molecular line maps ($^{13}CO$ 1-0, $C^{18}O$ 1-0, CS 1-0, $N_2H^+$ 1-0) obtained with the Nobeyama Radio Observatory (NRO) 45-m telescope. To analyze these data, we apply statistical methods, the principal component analysis (PCA) and spectral correlation function (SCF), which are known to be useful to study underlying turbulent properties and to quantitatively characterize cloud structure. We will present the preliminary results of observations and analyses.

  • PDF

Destruction of Giant Molecular Clouds by UV Radiation Feedback from Massive Stars

  • Kim, Jeong-Gyu;Kim, Woong-Tae;Ostriker, Eve C.;Skinne, M. Aaron
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.43.1-43.1
    • /
    • 2018
  • Star formation in galaxies predominantly takes place in giant molecular clouds (GMCs). While it is widely believed that UV radiation feedback from young massive stars can destroy natal GMCs by exciting HII regions and driving their expansion, our understanding on how this actually occurs remains incomplete. To quantitatively assess the effect of UV radiation feedback on cloud disruption, we conduct a series of theoretical studies on the dynamics of HII regions and its role in controlling the star formation efficiency (SFE) and lifetime of GMCs in a wide range of star-forming environments. We first develop a semi-analytic model for the expansion of spherical dusty HII regions driven by the combination of gas and radiation pressures, finding that GMCs in normal disk galaxies are destroyed by gas-pressure driven expansion with SFE < 10%, while more dense and massive clouds with higher SFE are disrupted primarily by radiation pressure. Next, we turn to radiation hydrodynamic simulations of GMC dispersal to allow for self-consistent star formation as well as inhomogeneous density and velocity structures arising from supersonic turbulence. For this, we develop an efficient parallel algorithm for ray tracing method, which enables us to probe a range of cloud masses and sizes. Our parameter study shows that the net SFE, lifetime (measured in units of free-fall time), and the importance of radiation pressure (relative to photoionization) increase primarily with the initial surface density of the cloud. Unlike in the idealized spherical model, we find that the dominant mass loss mechanism is photoevaporation rather than dynamical ejection and that a significant fraction of radiation escapes through low optical-depth channels. We will discuss the astronomical.

  • PDF

An Analysis of Aerosols Impacts on the Vertical Invigoration of Continental Stratiform Clouds (에어로솔의 대륙 층운형 구름 연직발달(Invigoration)에 미치는 영향 분석)

  • Kim, Yoo-Jun;Han, Sang-Ok;Lee, Chulkyu;Lee, Seoung-Soo;Kim, Byung-Gon
    • Atmosphere
    • /
    • v.23 no.3
    • /
    • pp.321-329
    • /
    • 2013
  • This study examines the effect of aerosols on the vertical invigoration of continental stratiform clouds, using a dataset of Atmospheric Radiation Measurement (ARM) Intensive Operational Period (IOP, March 2000) at the Southern Great Plains (SGP) site. To provide further support to our observation-based findings, the weather research and forecasting (WRF) sensitivity simulations with changing cloud condensation nuclei (CCN) concentrations have been carried out for the golden episode over SGP. First, cross correlation between observed aerosol scattering coefficient and cloud liquid water path (LWP) with a 160-minutes lag is the highest of r = 0.83 for the selected episode, which may be attributable to cloud vertical invigoration induced by an increase in aerosol loading. Modeled cloud fractions in a control run are well matched with the observation in the perspective of cloud morphology and lasting period. It is also found through a simple sensitivity with a change in CCN that aerosol invigoration (AIV) effect on stratiform cloud organization is attributable to a change in the cloud microphysics as well as dynamics such as the corresponding modification of cloud number concentrations, drop size, and latent heating rate, etc. This study suggests a possible cloud vertical invigoration even in the continental stratiform clouds due to aerosol enhancement in spite of a limited analysis based on a few observed continental cloud cases.