• 제목/요약/키워드: CloudCompare

검색결과 135건 처리시간 0.032초

Flow Marks of Polypropylene (PP) Composites in the Injection Molding

  • Jeong, Hyeon-Taek;Kim, Yong-Ryeol
    • 한국응용과학기술학회지
    • /
    • 제32권2호
    • /
    • pp.320-325
    • /
    • 2015
  • Flow mark is a sort of surface defect on the composite that can arise during the filling stage of the injection molding process. The purpose of this study is to clarify a mechanism of the flow mark which appears on the surface of injection molded Polypropylene (PP) through the characterization of the surface structure. The materials used in this report are PP/rubber and PP/talc compounding, which are widely used in automobile part. The flow mark shows two different constitutions, such as a luster part and a cloud part on the surface of the injection molded PP. We have investigated the surface structure of PP/rubber and PP/talc composites by using scanning electron microscope (SEM), energy dispersive x-ray spectroscopy (EDAX) and optical microscopy (OM). As a result, the cloud part contains higher contents of the rubber and talc compare to the luster part.

Initial Mass Function and Star Formation History in the Small Magellanic Cloud

  • Lee, Ki-Won
    • 한국지구과학회지
    • /
    • 제35권5호
    • /
    • pp.362-374
    • /
    • 2014
  • This study investigated the initial mass function (IMF) and star formation history of high-mass stars in the Small Magellanic Cloud (SMC) using a population synthesis technique. We used the photometric survey catalog of Lee (2013) as the observable quantities and compare them with those of synthetic populations based on Bayesian inference. For the IMF slope (${\Gamma}$) range of -1.1 to -3.5 with steps of 0.1, five types of star formation models were tested: 1) continuous; 2) single burst at 10 Myr; 3) single burst at 60 Myr; 4) double bursts at those epochs; and 5) a complex hybrid model. In this study, a total of 125 models were tested. Based on the model calculations, it was found that the continuous model could simulate the high-mass stars of the SMC and that its IMF slope was -1.6 which is slightly steeper than Salpeter's IMF, i.e., ${\Gamma}=-1.35$.

A MULTI-WAVELENGTH STUDY OF 30 DORADUS COMPLEX IN THE LARGE MAGELLANIC CLOUD

  • Kim, Sung-Eun
    • 천문학회지
    • /
    • 제38권3호
    • /
    • pp.365-370
    • /
    • 2005
  • We have made a multi-wavelength study of the X-ray bright giant shell complex 30 Doradus in the Large Magellanic Cloud (LMC). This is the one of the largest H II complexes in the Local Group. The Australia Telescope Compact Array (ATCA) and the Parkes 64-m single dish observations reveal that the distribution and internal motions of H I gas show the effects of fast stellar winds and supernova blasts. The hot emitting gas within the 30 Doradus complex and the entire giant H II complex are encompassed by an expanding H I shell. We investigate the dynamical age of this H I shell and compare to the age of starbursts occurred in the 30 Doradus nebula using the radiative transfer model and the infrared properties.

A BVR Photometric Survey of the Small Magellanic Cloud with a Mosaic CCD

  • Lee, Ki-Won
    • 한국지구과학회지
    • /
    • 제34권5호
    • /
    • pp.415-427
    • /
    • 2013
  • We performed a BVR photometric survey for the entire Small Magellanic Cloud (~26 deg 2 ) with a mosaic system, Wide Field Imager (WFI), covering three seasons: September and October 2001 and November 2002. Through the usual data reduction procedures, we present ~0.73 million catalogue stars brighter than 19 magnitude in B amongst a total of ~1.3 million and compare them with published astrometry and photometry results. We found that the average differences between our and the published data are ~0.7 arcsec in astrometry and 0.065, 0.054, and 0.163 in B, V, and R, respectively, in photometry. In addition, using the 2dF spectroscopic data from Evans et al. (2004), we determined the color excesses in (B-V) and (V-R) to be $0.086{\pm}0.156$, and $0.065{\pm}0.112$, respectively, while for the distance modulus, we obtained $18.55{\pm}1.05$.

불규칙 3차원 데이터를 위한 기하학정보를 이용한 딥러닝 기반 기법 분석 (Survey on Deep Learning Methods for Irregular 3D Data Using Geometric Information)

  • 조성인;박해주
    • 대한임베디드공학회논문지
    • /
    • 제16권5호
    • /
    • pp.215-223
    • /
    • 2021
  • 3D data can be categorized into two parts : Euclidean data and non-Euclidean data. In general, 3D data exists in the form of non-Euclidean data. Due to irregularities in non-Euclidean data such as mesh and point cloud, early 3D deep learning studies transformed these data into regular forms of Euclidean data to utilize them. This approach, however, cannot use memory efficiently and causes loses of essential information on objects. Thus, various approaches that can directly apply deep learning architecture to non-Euclidean 3D data have emerged. In this survey, we introduce various deep learning methods for mesh and point cloud data. After analyzing the operating principles of these methods designed for irregular data, we compare the performance of existing methods for shape classification and segmentation tasks.

Research of fast point cloud registration method in construction error analysis of hull blocks

  • Wang, Ji;Huo, Shilin;Liu, Yujun;Li, Rui;Liu, Zhongchi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.605-616
    • /
    • 2020
  • The construction quality control of hull blocks is of great significance for shipbuilding. The total station device is predominantly employed in traditional applications, but suffers from long measurement time, high labor intensity and scarcity of data points. In this paper, the Terrestrial Laser Scanning (TLS) device is utilized to obtain an efficient and accurate comprehensive construction information of hull blocks. To address the registration problem which is the most important issue in comparing the measurement point cloud and the design model, an automatic registration approach is presented. Furthermore, to compare the data acquired by TLS device and sparse point sets obtained by total station device, a method for key point extraction is introduced. Experimental results indicate that the proposed approach is fast and accurate, and that applying TLS to control the construction quality of hull blocks is reliable and feasible.

Core formation in different environments: Planck Galactic Cold Clumps (PGCCs) in the λ Orionis cloud, Orion A and Orion B clouds

  • Yi, HeeWeon;Lee, Jeong-Eun;Liu, Tie;Kim, Kee-Tae;Wu, Yuefang
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.37.4-38
    • /
    • 2016
  • Based on the $850{\mu}m$ dust continuum data from James Clerk Maxwell Telescope (JCMT)/SCUBA-2, we compare overall properties of Planck Galactic Cold Clumps (PGCCs) in the ${\lambda}$ Orionis cloud with PGCCs in other molecular clouds, Orion A and Orion B. The Orion A and Orion B clouds are well known active star-forming region, while, ${\lambda}$ Orionis cloud has a different environment associating with prominent OB associations and a giant H II region. PGCCs in the ${\lambda}$ Orionis cloud have higher dust temperatures (Td~16.08 K) and lower values of dust emissivity (${\beta}{\sim}1.65$) than Orion A and Orion B clouds. In addition, we found the lowest detection rate (16 %, 8 out of 50) of PGCCs at $850{\mu}m$ in the ${\lambda}$ Orionis cloud while among three regions; Orion A and Orion B clouds show much higher detection rates of ~ 76 % (23 out of 30) and 56 % (9 out of 16), respectively. The detected 8 PGCCs in the ${\lambda}$ Orionis cloud have substructures and we identified 15 cores. The cores also show much lower median values of size (~0.08 pc), column density (~ ), number density (~ ), and mass (~ ) compared with other cores in the Orion A and Orion B clouds. These core properties in the ${\lambda}$ Orionis cloud can be attributed to the compression and external heating by the nearby H II region, which may prevent the PGCCs from forming gravitationally bound structures and eventually disperse them. These results well present the negative stellar feedback to core formation.

  • PDF

Mitigating TCP Incast Issue in Cloud Data Centres using Software-Defined Networking (SDN): A Survey

  • Shah, Zawar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권11호
    • /
    • pp.5179-5202
    • /
    • 2018
  • Transmission Control Protocol (TCP) is the most widely used protocol in the cloud data centers today. However, cloud data centers using TCP experience many issues as TCP was designed based on the assumption that it would primarily be used in Wide Area Networks (WANs). One of the major issues with TCP in the cloud data centers is the Incast issue. This issue arises because of the many-to-one communication pattern that commonly exists in the modern cloud data centers. In many-to-one communication pattern, multiple senders simultaneously send data to a single receiver. This causes packet loss at the switch buffer which results in TCP throughput collapse that leads to high Flow Completion Time (FCT). Recently, Software-Defined Networking (SDN) has been used by many researchers to mitigate the Incast issue. In this paper, a detailed survey of various SDN based solutions to the Incast issue is carried out. In this survey, various SDN based solutions are classified into four categories i.e. TCP Receive Window based solutions, Tuning TCP Parameters based solutions, Quick Recovery based solutions and Application Layer based solutions. All the solutions are critically evaluated in terms of their principles, advantages, and shortcomings. Another important feature of this survey is to compare various SDN based solutions with respect to different performance metrics e.g. maximum number of concurrent senders supported, calculation of delay at the controller etc. These performance metrics are important for deployment of any SDN based solution in modern cloud data centers. In addition, future research directions are also discussed in this survey that can be explored to design and develop better SDN based solutions to the Incast issue.

Study of Data Placement Schemes for SNS Services in Cloud Environment

  • Chen, Yen-Wen;Lin, Meng-Hsien;Wu, Min-Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권8호
    • /
    • pp.3203-3215
    • /
    • 2015
  • Due to the high growth of SNS population, service scalability is one of the critical issues to be addressed. The cloud environment provides the flexible computing and storage resources for services deployment, which fits the characteristics of scalable SNS deployment. However, if the SNS related information is not properly placed, it will cause unbalance load and heavy transmission cost on the storage virtual machine (VM) and cloud data center (CDC) network. In this paper, we characterize the SNS into a graph model based on the users' associations and interest correlations. The node weight represents the degree of associations, which can be indexed by the number of friends or data sources, and the link weight denotes the correlation between users/data sources. Then, based on the SNS graph, the two-step algorithm is proposed in this paper to determine the placement of SNS related data among VMs. Two k-means based clustering schemes are proposed to allocate social data in proper VM and physical servers for pre-configured VM and dynamic VM environment, respectively. The experimental example was conducted and to illustrate and compare the performance of the proposed schemes.

표준기상데이터의 운량과 일사량 데이터 비교 분석 (Analysis of cloud cover and solar irradiance of typical meteorological data)

  • 유호천;이관호;강현구
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.330-335
    • /
    • 2009
  • kDomestic studies on meteorologicaldata have been carried out, however they were mostly not constant but limited to fragment compilation. The studies on solar energy, among others, have been relatively active but the measurement of solar irradiance is also limited to some extent. This study, in an effort to identify the difference in data between solar radiance and cloud cover, was intended to compare and analyze the typical meteorological data developed by Korean Solar Energy Society with the solar irradiance calculated using the typical meteorological data and cloud cover data provided by current simulation program. Monthly average solar irradiance from the meteorological data (ISO TRY) of Korea's typical meteorological data which was actuallymeasured appeared to be far below the monthly solar irradiance from the American Department of Energy. The solar irradiance calculated based on cloud cover indicates very limited difference between the two data, so the solar irradiance measured by Korean typical metrologicaldata (ISO TRY) indicated the similar value, which demonstrates the solar irradiance data from Korean Meteorological Administration is more accurate than those US National Weather Center.

  • PDF