• Title/Summary/Keyword: Cloud-based IoT

Search Result 255, Processing Time 0.022 seconds

IoT-Based Health Big-Data Process Technologies: A Survey

  • Yoo, Hyun;Park, Roy C.;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.974-992
    • /
    • 2021
  • Recently, the healthcare field has undergone rapid changes owing to the accumulation of health big data and the development of machine learning. Data mining research in the field of healthcare has different characteristics from those of other data analyses, such as the structural complexity of the medical data, requirement for medical expertise, and security of personal medical information. Various methods have been implemented to address these issues, including the machine learning model and cloud platform. However, the machine learning model presents the problem of opaque result interpretation, and the cloud platform requires more in-depth research on security and efficiency. To address these issues, this paper presents a recent technology for Internet-of-Things-based (IoT-based) health big data processing. We present a cloud-based IoT health platform and health big data processing technology that reduces the medical data management costs and enhances safety. We also present a data mining technology for health-risk prediction, which is the core of healthcare. Finally, we propose a study using explainable artificial intelligence that enhances the reliability and transparency of the decision-making system, which is called the black box model owing to its lack of transparency.

Cloud Computing Based Analysis Incorporated with the Internet of Things (IoT) in Nuclear Safety Assessment for Fukushima Dai-ichi Disaster (후쿠시마 다이-이치 재해에 대한 원자력 안전 평가에서 사물 인터넷 (IoT)과 통합된 클라우드 컴퓨팅 기반 분석)

  • Woo, Tae-Ho;Jang, Kyung-Bae
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.1
    • /
    • pp.73-81
    • /
    • 2020
  • The internet of things (IoT) using cloud computing is applied to nuclear industry in which the nuclear power plant (NPP) accident is analyzed for the safety assessment. The Fukushima NPP accident is modeled for the accident simulations where the earthquake induced plant failure accident is used for analyzing the cloud computing technology. The fast and reasonable treatment in the natural disaster was needed in the case of the Fukushima. The real time safety assessment (RTSA) and the Monte-Carlo real time assessment (MCRTA) are constructed. This cloud computing could give the practicable method to prepare for the future similar accident.

Blockchain based Application to Electric Vehicle in IoT environment

  • Yang, Ho-Kyung;Cha, Hyun-Jong;Song, You-Jin
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.233-239
    • /
    • 2022
  • Recently, research is being conducted on the rapid service provision and reliability of the instance-based rather than the existing IP-based structure. Research is mainly conducted through Block cloud, a platform that combines service-centric networking (SCN) and blockchain. In addition, the Internet of Things network has been proposed as a fog computing environment in the structure of the existing cloud computing. Fog computing is an environment suitable for real-time information processing. In this paper, we propose a new Internet network structure based on fog computing that requires real-time for rapid processing of IoT services. The proposed system applies IoTA, the third-generation blockchain based on DAG, to the block cloud. In addition, we want to propose a basic model of the object block chain and check the application services of electric vehicles.

Ontology-based IoT Context Information Modeling and Semantic-based IoT Mashup Services Implementation (온톨로지 기반의 IoT 상황 정보 모델링 및 시맨틱 기반 IoT 매쉬업 서비스 구현)

  • Seok, Hyun-Seung;Lee, Yong-Ju
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.671-678
    • /
    • 2019
  • The semantic information provided through the semantic-based IoT system will produce new high value-added products that are completely different from what we have known and experienced. From this point of view, the key issue of current IoT technology and applications is the development of an intelligent IoT platform architecture. The proposed system collects the IoT data of the sensors from the cloud computer, converts them into RDF, and annotates them with semantics. The converted semantic data is shared and utilized through the ontology repository. We use KT's IoTMakers as a cloud computing environment, and the ontology repository uses Jena's Fuseki server to express SPARQL query results on the web using Daum Map API and Highcharts API. This gives people the opportunity to access the semantic IoT mash-up service easily and has various application possibilities.

A Fog-based IoT Service Interoperability System using Blockchain in Cloud Environment (클라우드 환경에서 블록체인을 이용한 포그 기반 IoT 서비스 상호운용 시스템)

  • Kim, Mi Sun;Park, Yong Suk;Seo, Jae Hyun
    • Smart Media Journal
    • /
    • v.11 no.3
    • /
    • pp.39-53
    • /
    • 2022
  • Cloud of Things (CoT) can provide IoT applications with unlimited storage functions and processing power supported by cloud services. However, in a centralized cloud of things, it can create a single point of failure that can lead to bottleneck problems, outages of the CoT network. In this paper, to solve the problem of centralized cloud of things and interoperate between different service domains, we propose an IoT service interoperability system using distributed fog computing and blockchain technology. Distributed fog is used to provide real-time data processing and services in fog systems located at a geographically close distance to IoT devices, and to enable service interoperability between each fog using smart contracts and distributed ledgers of the blockchain. The proposed system provides services within a region close to the distributed fog entrusted with the service from the cloud, and it is possible to access the services of other fogs without going through the cloud even between fogs. In addition, by sharing a service right token issuance information between the cloud and fog nodes using a blockchain network, the integrity of the token can be guaranteed and reliable service interoperability between fog nodes can be performed.

A Study on the Structure of Research Domain for Internet of Things Based on Keyword Analysis (키워드 분석 기반 사물인터넷 연구 도메인 구조 분석)

  • Namn, Su-Hyeon
    • Management & Information Systems Review
    • /
    • v.36 no.1
    • /
    • pp.273-290
    • /
    • 2017
  • Internet of Things (IoT) is considered to be the next wave of Information Technology transformation after the Internet has changed the process of doing business. Since the domain of IoT ranging from the sensor technology to service to the users is wide, the structure of the research domain is not delineated clearly. To do that we suggest to use the Technology Stack Model proposed by Porter et al.(2014) to measure the maturity level of IoT in organizations. Based on the Stack Model, for the general understandings of IoT, we do keyword analyses on the academic papers whose major research issue is IoT. It is found that the current status of IoT application from the perspectives of cloud and big data analytics is not active, meaning that the real value of IoT has not been realized. We also examine the cases which deal with the part of cloud process which is crucial for value accrual. Based on these findings, we suggest the future direction of IoT research. We also propose that IT is to value chain what IoT is to the Stack Model to derive value in organizations.

  • PDF

EEIRI: Efficient Encrypted Image Retrieval in IoT-Cloud

  • Abduljabbar, Zaid Ameen;Ibrahim, Ayad;Hussain, Mohammed Abdulridha;Hussien, Zaid Alaa;Al Sibahee, Mustafa A.;Lu, Songfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5692-5716
    • /
    • 2019
  • One of the best means to safeguard the confidentiality, security, and privacy of an image within the IoT-Cloud is through encryption. However, looking through encrypted data is a difficult process. Several techniques for searching encrypted data have been devised, but certain security solutions may not be used in IoT-Cloud because such solutions are not lightweight. We propose a lightweight scheme that can perform a content-based search of encrypted images, namely EEIRI. In this scheme, the images are represented using local features. We develop and validate a secure scheme for measuring the Euclidean distance between two descriptor sets. To improve the search efficiency, we employ the k-means clustering technique to construct a searchable tree-based index. Our index construction process ensures the privacy of the stored data and search requests. When compared with more familiar techniques of searching images over plaintexts, EEIRI is considered to be more efficient, demonstrating a higher search cost of 7% and a decrease in search accuracy of 1.7%. Numerous empirical investigations are carried out in relation to real image collections so as to evidence our work.

Deep Learning-Based Dynamic Scheduling with Multi-Agents Supporting Scalability in Edge Computing Environments (멀티 에이전트 에지 컴퓨팅 환경에서 확장성을 지원하는 딥러닝 기반 동적 스케줄링)

  • JongBeom Lim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.9
    • /
    • pp.399-406
    • /
    • 2023
  • Cloud computing has been evolved to support edge computing architecture that combines fog management layer with edge servers. The main reason why it is received much attention is low communication latency for real-time IoT applications. At the same time, various cloud task scheduling techniques based on artificial intelligence have been proposed. Artificial intelligence-based cloud task scheduling techniques show better performance in comparison to existing methods, but it has relatively high scheduling time. In this paper, we propose a deep learning-based dynamic scheduling with multi-agents supporting scalability in edge computing environments. The proposed method shows low scheduling time than previous artificial intelligence-based scheduling techniques. To show the effectiveness of the proposed method, we compare the performance between previous and proposed methods in a scalable experimental environment. The results show that our method supports real-time IoT applications with low scheduling time, and shows better performance in terms of the number of completed cloud tasks in a scalable experimental environment.

A Distributed Fog-based Access Control Architecture for IoT

  • Alnefaie, Seham;Cherif, Asma;Alshehri, Suhair
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4545-4566
    • /
    • 2021
  • The evolution of IoT technology is having a significant impact on people's lives. Almost all areas of people's lives are benefiting from increased productivity and simplification made possible by this trending technology. On the downside, however, the application of IoT technology is posing some security challenges, among them, unauthorized access to IoT devices. This paper presents an Attribute-based Access Control Fog architecture that aims to achieve effective distribution, increase availability and decrease latency. In the proposed architecture, the main functional points of the Attribute-based Access Control are distributed to provide policy decision and policy information mechanisms in fog nodes, locating these functions near end nodes. To evaluate the proposed architecture, an access control engine based on the Attribute-based Access Control was built using the Balana library and simulated using EdgeCloudSim to compare it to the traditional cloud-based architecture. The experiments show that the fog-based architecture provides robust results in terms of reducing latency in making access decisions.

Performance Evaluation of an IoT Platform (듀티사이클 환경의 무선센서네크워크에서 분산 브로드캐스트 스케줄링 기법)

  • Dang, Thien-Binh;Tran, Manh-Hung;Le, Duc-Tai;Yeom, Sanggil;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.673-676
    • /
    • 2017
  • Accompanying the Internet of Things (IoT) is a demand of advanced applications and services utilizing the potential of the IoT environment. Monitoring the environment for a provision of context-aware services to the human beings is one of the new trends in our future life. The IoTivity Cloud is one of the most notable open-source platform bringing an opportunity to collect, analyze, and interpret a huge amount of data available in the IoT environment. Based on the IoTivity Cloud, we aim to develop a novel platform for comprehensive monitoring of a future network, which facilitates on-demand data collection to enable the network behavior prediction and the quality of user experience maintenance. In consideration of performance evaluation of the monitoring platform, this paper presents results of a preliminary test on the data acquisition/supply process in the IoTivity Cloud.