• Title/Summary/Keyword: Cloud platform

Search Result 503, Processing Time 0.024 seconds

Two Factor Authentication for Cloud Computing

  • Lee, Shirly;Ong, Ivy;Lim, Hyo-Taek;Lee, Hoon-Jae
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.427-432
    • /
    • 2010
  • The fast-emerging of cloud computing technology today has sufficiently benefited its wide range of users from individuals to large organizations. It carries an attractive characteristic by renting myriad virtual storages, computing resources and platform for users to manipulate their data or utilize the processing resources conveniently over Internet without the need to know the exact underlying infrastructure which is resided remotely at cloud servers. However due to the loss of direct control over the systems/applications, users are concerned about the risks of cloud services if it is truly secured. In the literature, there are cases where attackers masquerade as cloud users, illegally access to their accounts, by stealing the static login password or breaking the poor authentication gate. In this paper, we propose a two-factor authentication framework to enforce cloud services' authentication process, which are Public Key Infrastructure (PKI) authentication and mobile out-of-band (OOB) authentication. We discuss the framework's security analysis in later session and conclude that it is robust to phishing and replay attacks, prohibiting fraud users from accessing to the cloud services.

An Interactive Multi-Factor User Authentication Framework in Cloud Computing

  • Elsayed Mostafa;M.M. Hassan;Wael Said
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.63-76
    • /
    • 2023
  • Identity and access management in cloud computing is one of the leading significant issues that require various security countermeasures to preserve user privacy. An authentication mechanism is a leading solution to authenticate and verify the identities of cloud users while accessing cloud applications. Building a secured and flexible authentication mechanism in a cloud computing platform is challenging. Authentication techniques can be combined with other security techniques such as intrusion detection systems to maintain a verifiable layer of security. In this paper, we provide an interactive, flexible, and reliable multi-factor authentication mechanisms that are primarily based on a proposed Authentication Method Selector (AMS) technique. The basic idea of AMS is to rely on the user's previous authentication information and user behavior which can be embedded with additional authentication methods according to the organization's requirements. In AMS, the administrator has the ability to add the appropriate authentication method based on the requirements of the organization. Based on these requirements, the administrator will activate and initialize the authentication method that has been added to the authentication pool. An intrusion detection component has been added to apply the users' location and users' default web browser feature. The AMS and intrusion detection components provide a security enhancement to increase the accuracy and efficiency of cloud user identity verification.

Design and Prototyping of Scientific Collaboration Platform over KREONET (KREONET 기반의 과학기술협업연구 플랫폼(RealLab) 설계 및 프로토타입 구축)

  • Kwon, Yoonjoo;Hong, Wontaek
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.9
    • /
    • pp.297-306
    • /
    • 2015
  • Cloud computing has been increasingly used in various fields due to its flexibility, scalability, cost effectiveness, etc. Recently, many scientific communities have been attempting to use cloud computing as a way to deal with difficulties in constructing and operating a research infrastructure. Especially, since they need various collaborations based on networking, such as sharing experimental data, redistributing experimental results, and so forth, cloud computing environment that supports high performance networking is required for scientific communities. To address these issues, we propose RealLab, a high performance cloud platform for collaborative research that provides virtual experimental research environment and data sharing infrastructure over KREONET/GLORIAD. Additionally, we describe some RealLab use cases for showing the swift creation of experimental environment and explain how massive experimental data can be transferred and shared among the community members.

A Development of Real-time Monitoring System in Industrial Factory Based on Cloud Platform Using IoT Device (IoT 디바이스를 이용한 클라우드 플랫폼 기반의 실시간 공장 모니터링 시스템 개발)

  • Park, Geon-Soo;Tran, Trung Tin;Dang, Van Chien;Gil, Ki-Jong;Shin, Yong-Bin;Choi, Jae-Won;Kim, Jong-Wook
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.1
    • /
    • pp.25-32
    • /
    • 2018
  • In this paper, we present a proposed monitoring system for smart factories with several aspects, including information gathering, analysis, control, and display that relate to concurrently operation processes in the factory area. This paper proposes a monitoring and management system for industrial automation. In particular, it uses an Internet of Thing (IoT) device with a data protocol unit to convert the industrial protocols and transfer the information on various parameters. In the case of data communication, the proposed monitoring system is designed to support users to remotely manage with the cloud server by implementing conversion between Modbus RTU and Modbus TCP of protocol communications. The proposed communication technique has been verified by experiments.

A Memory Configuration Method for Virtual Machine Based on User Preference in Distributed Cloud

  • Liu, Shukun;Jia, Weijia;Pan, Xianmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5234-5251
    • /
    • 2018
  • It is well-known that virtualization technology can bring many benefits not only to users but also to service providers. From the view of system security and resource utility, higher resource sharing degree and higher system reliability can be obtained by the introduction of virtualization technology in distributed cloud. The small size time-sharing multiplexing technology which is based on virtual machine in distributed cloud platform can enhance the resource utilization effectively by server consolidation. In this paper, the concept of memory block and user satisfaction is redefined combined with user requirements. According to the unbalanced memory resource states and user preference requirements in multi-virtual machine environments, a model of proper memory resource allocation is proposed combined with memory block and user satisfaction, and at the same time a memory optimization allocation algorithm is proposed which is based on virtual memory block, makespan and user satisfaction under the premise of an orderly physical nodes states also. In the algorithm, a memory optimal problem can be transformed into a resource workload balance problem. All the virtual machine tasks are simulated in Cloudsim platform. And the experimental results show that the problem of virtual machine memory resource allocation can be solved flexibly and efficiently.

A study on live vertical scale-up in a cloud environment (클라우드 환경에서의 무중단 수직 확장에 관한 연구)

  • Jun-Seok Park;Dae-Sik Ko
    • Journal of Platform Technology
    • /
    • v.10 no.4
    • /
    • pp.70-81
    • /
    • 2022
  • In this paper, we proposed a Virtual Machine Placement (VMP) method to provide live vertical scaling services for cloud resources. Since free space on the physical server must be secured in advance for vertical scaling, a "general-mixed-vertical" mode conversion algorithm based on the FirstFit placement strategy that variably adjusts the allocation ratio of virtual servers to physical servers for this purpose is presented. Simulations were performed using parameters such as vertical scaling ratio, virtualization ratio, and free resource ratio. When the vertical scaling ratio is 50%, considering free space, 150% of resources are required as a whole, but simulation results of the proposed algorithm show that only up to 125% of free space is required.

Algorithms for Efficient Digital Media Transmission over IoT and Cloud Networking

  • Stergiou, Christos;Psannis, Kostas E.;Plageras, Andreas P.;Ishibashi, Yutaka;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.5 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • In recent years, with the blooming of Internet of Things (IoT) and Cloud Computing (CC), researchers have begun to discover new methods of technological support in all areas (e.g. health, transport, education, etc.). In this paper, in order to achieve a type of network that will provide more intelligent media-data transfer new technologies were studied. Additionally, we have been studied the use of various open source tools, such as CC analyzers and simulators. These tools are useful for studying the collection, the storage, the management, the processing, and the analysis of large volumes of data. The simulation platform which have been used for our research is CloudSim, which runs on Eclipse software. Thus, after measuring the network performance with CloudSim, we also use the Cooja emulator of the Contiki OS, with the aim to confirm and access more metrics and options. More specifically, we have implemented a network topology from a small section of the script of CloudSim with Cooja, so that we can test a single network segment. The results of our experimental procedure show that there are not duplicated packets received during the procedure. This research could be a start point for better and more efficient media data transmission.

Study of Danger-Theory-Based Intrusion Detection Technology in Virtual Machines of Cloud Computing Environment

  • Zhang, Ruirui;Xiao, Xin
    • Journal of Information Processing Systems
    • /
    • v.14 no.1
    • /
    • pp.239-251
    • /
    • 2018
  • In existing cloud services, information security and privacy concerns have been worried, and have become one of the major factors that hinder the popularization and promotion of cloud computing. As the cloud computing infrastructure, the security of virtual machine systems is very important. This paper presents an immune-inspired intrusion detection model in virtual machines of cloud computing environment, denoted I-VMIDS, to ensure the safety of user-level applications in client virtual machines. The model extracts system call sequences of programs, abstracts them into antigens, fuses environmental information of client virtual machines into danger signals, and implements intrusion detection by immune mechanisms. The model is capable of detecting attacks on processes which are statically tampered, and is able to detect attacks on processes which are dynamically running. Therefore, the model supports high real time. During the detection process, the model introduces information monitoring mechanism to supervise intrusion detection program, which ensures the authenticity of the test data. Experimental results show that the model does not bring much spending to the virtual machine system, and achieves good detection performance. It is feasible to apply I-VMIDS to the cloud computing platform.

Distributed Data Platform Collaboration Agent Design Using EMRA

  • Park, Ho-Kyun;Moon, Seok-Jae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.40-46
    • /
    • 2022
  • Recently, as the need for data access by integrating information in a distributed cloud environment increases in enterprise-wide enterprises, interoperability for collaboration between existing legacy systems is emphasized. In order to interconnect independent legacy systems, it is necessary to overcome platform heterogeneity and semantic heterogeneity. To solve this problem, middleware was built using EMRA (Extended MetaData Registry Access) based on ISO/IEC 11179. However, the designed middleware cannot guarantee the efficiency of information utilization because it does not have an adjustment function for each node's resource status and work status. Therefore, it is necessary to manage and adjust the legacy system. In this paper, we coordinate the correct data access between the information requesting agent and the information providing agent, and integrate it by designing a cooperative agent responsible for information monitoring and task distribution of each legacy system and resource management of local nodes. to make efficient use of the available information.

Development of Speech Recognition and Synthetic Application for the Hearing Impairment (청각장애인을 위한 음성 인식 및 합성 애플리케이션 개발)

  • Lee, Won-Ju;Kim, Woo-Lin;Ham, Hye-Won;Yun, Sang-Un
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.129-130
    • /
    • 2020
  • 본 논문에서는 청각장애인의 의사소통을 위한 안드로이드 애플리케이션 시스템 구현 결과를 보인다. 구글 클라우드 플랫폼(Google Cloud Platform)의 STT(Speech to Text) API를 이용하여 음성 인식을 통해 대화의 내용을 텍스트의 형태로 출력한다. 그리고 TTS(Text to Speech)를 이용한 음성 합성을 통해 텍스트를 음성으로 출력한다. 또한, 포그라운드 서비스(Service)에서 가속도계 센서(Accelerometer Sensor)를 이용하여 스마트폰을 2~3회 흔들었을 때 해당 애플리케이션을 실행할 수 있도록 하여 애플리케이션의 활용성을 높인 시스템을 개발하였다.

  • PDF