• Title/Summary/Keyword: Cloud Network

Search Result 853, Processing Time 0.023 seconds

An Overview of Mobile Edge Computing: Architecture, Technology and Direction

  • Rasheed, Arslan;Chong, Peter Han Joo;Ho, Ivan Wang-Hei;Li, Xue Jun;Liu, William
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4849-4864
    • /
    • 2019
  • Modern applications such as augmented reality, connected vehicles, video streaming and gaming have stringent requirements on latency, bandwidth and computation resources. The explosion in data generation by mobile devices has further exacerbated the situation. Mobile Edge Computing (MEC) is a recent addition to the edge computing paradigm that amalgamates the cloud computing capabilities with cellular communications. The concept of MEC is to relocate the cloud capabilities to the edge of the network for yielding ultra-low latency, high computation, high bandwidth, low burden on the core network, enhanced quality of experience (QoE), and efficient resource utilization. In this paper, we provide a comprehensive overview on different traits of MEC including its use cases, architecture, computation offloading, security, economic aspects, research challenges, and potential future directions.

A Sensing Data Collection Strategy in Software-Defined Mobile-Edge Vehicular Networks (SDMEVN) (소프트웨어 정의 모바일 에지 차량 네트워크(SDMEVN)의 센싱 데이터 수집 전략)

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.62-65
    • /
    • 2018
  • This paper comes out with the study on sensing data collection strategy in a Software-Defined Mobile Edge vehicular networking. The two cooperative data dissemination are Direct Vehicular cloud mode and edge cell trajectory prediction decision mode. In direct vehicular cloud, the vehicle observe its neighboring vehicles and sets up vehicular cloud for cooperative sensing data collection, the data collection output can be transmitted from vehicles participating in the cooperative sensing data collection computation to the vehicle on which the sensing data collection request originate through V2V communication. The vehicle on which computation originate will reassemble the computation out-put and send to the closest RSU. The SDMEVN (Software Defined Mobile Edge Vehicular Network) Controller determines how much effort the sensing data collection request requires and calculates the number of RSUs required to support coverage of one RSU to the other. We set up a simulation scenario based on realistic traffic and communication features and demonstrate the scalability of the proposed solution.

  • PDF

A Reinforcement Learning Framework for Autonomous Cell Activation and Customized Energy-Efficient Resource Allocation in C-RANs

  • Sun, Guolin;Boateng, Gordon Owusu;Huang, Hu;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3821-3841
    • /
    • 2019
  • Cloud radio access networks (C-RANs) have been regarded in recent times as a promising concept in future 5G technologies where all DSP processors are moved into a central base band unit (BBU) pool in the cloud, and distributed remote radio heads (RRHs) compress and forward received radio signals from mobile users to the BBUs through radio links. In such dynamic environment, automatic decision-making approaches, such as artificial intelligence based deep reinforcement learning (DRL), become imperative in designing new solutions. In this paper, we propose a generic framework of autonomous cell activation and customized physical resource allocation schemes for energy consumption and QoS optimization in wireless networks. We formulate the problem as fractional power control with bandwidth adaptation and full power control and bandwidth allocation models and set up a Q-learning model to satisfy the QoS requirements of users and to achieve low energy consumption with the minimum number of active RRHs under varying traffic demand and network densities. Extensive simulations are conducted to show the effectiveness of our proposed solution compared to existing schemes.

Implementation of Session Test Tool for MEC (MEC를 위한 세션 테스트 도구 개발)

  • Kim, Tae-Young;Kim, Tae-Hyun;Jin, Sunggeun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.1
    • /
    • pp.11-19
    • /
    • 2021
  • The emerging Fifth Generation (5G) network technology brings us a new demand for low latency services. However, it may not be possible for long-distanced cloud computing servers to support users with satisfactory low latency services. For this reason, Multi-access Edge Computing (MEC) technology are gaining attraction since it is designed to provide low latency services to users by placing cloud computing resources to base-stations or mobile switching centers nearby users. Accordingly, it is necessary to verify the deployed containers on the MECs are reliable enough to provide low latency services empirically. For the purpose, we develop a testing tool to verify the reliability as well as network resources status of running MECs by deploying containers on the MECs in a Kubernetes environment.

The Blockchain-Based Decentralized Approaches for Cloud Computing to Offer Enhanced Quality of Service in terms of Privacy Preservation and Security: A Review.

  • Arun Kumar, B.R.;Komala, R
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.115-122
    • /
    • 2021
  • In the recent past enormous enterprise applications have migrated into the cloud computing (CC). The researchers have contributed to this ever growing technology and as a result several innovations strengthened to offer the quality of service (QoS) as per the demand of the customer. It was treated that management of resources as the major challenge to offer the QoS while focusing on the trade-offs among the performance, availability, reliability and the cost. Apart from these regular key focuses to meet the QoS other key issues in CC are data integrity, privacy, transparency, security and legal aspects (DIPTSL). This paper aims to carry out the literature survey by reflecting on the prior art of the work with regard to QoS in CC and possible implementation of block chain to implement decentralised CC solutions governing DIPTSL as an integral part of QoS.

Design Patterns for Building Context-Aware Transactional Services in PaaS-Enabled Systems

  • Ettazi Widad;Riane Driss;Nassar Mahmoud
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.91-100
    • /
    • 2023
  • Pervasive computing is characterized by a key characteristic that affects the operating environment of services and users. It places more emphasis on dynamic environments where available resources continuously vary without prior knowledge of their availability, while in static environments the services provided to users are determined in advance. At the same time, Cloud computing paradigm introduced flexibility of use according to the user's profile and needs. In this paper, we aimed to provide Context-Aware Transactional Service applications with solutions so that it can be integrated and invoked like any service in the digital ecosystem. Being able to compose is not enough, each service and application must be able to offer a well-defined behavior. This behavior must be controlled to meet the dynamicity and adaptability necessary for the new user's requirements. The motivation in this paper is to offer design patterns that will provide a maximum of automatism in order to guarantee short reaction times and minimal human intervention. Our proposal includes a cloud service model by developing a PaaS service that allows CATS adaptation. A new specification for the validation of CATS model has been also introduced using the ACTA formalism.

A SEM-ANN Two-step Approach for Predicting Determinants of Cloud Service Use Intention (SEM-Artificial Neural Network 2단계 접근법에 의한 클라우드 스토리지 서비스 이용의도 영향요인에 관한 연구)

  • Guangbo Jiang;Sundong Kwon
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.6
    • /
    • pp.91-111
    • /
    • 2023
  • This study aims to identify the influencing factors of intention to use cloud services using the SEM-ANN two-step approach. In previous studies of SEM-ANN, SEM presented R2 and ANN presented MSE(mean squared error), so analysis performance could not be compared. In this study, R2 and MSE were calculated and presented by SEM and ANN, respectively. Then, analysis performance was compared and feature importances were compared by sensitivity analysis. As a result, the ANN default model improved R2 by 2.87 compared to the PLS model, showing a small Cohen's effect size. The ANN optimization model improved R2 by 7.86 compared to the PLS model, showing a medium Cohen effect size. In normalized feature importances, the order of importances was the same for PLS and ANN. The contribution of this study, which links structural equation modeling to artificial intelligence, is that it verified the effect of improving the explanatory power of the research model while maintaining the order of importance of independent variables.

POS System Integrated with Cross-Platform for Supervision of Restaurant's

  • Alisha Farman;Hira Farman;Saad Ahmed;Anees Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.8
    • /
    • pp.205-213
    • /
    • 2024
  • As the Restaurant industry is growing rapidly. The demand for an effortless POS (Point Of Sale) system which can make management easy is increasing. So, the purpose of this study is to digitalise the growing industry of restaurants and its consumers by utilizing cross-platform development. Crossplatform development frameworks provide great opportunities to solve the issues of handling ubiquitous devices with minimum efforts to reduce the cost and increase the stability, accessibility of the end consumers. By availing those opportunities, an Integrated POS system with cross platform is proposed. This integrated cross-platform POS system is originally designed for a single restaurant managed by its own private cloud server. This research solves the 2 major problems. One of them is the accessibility of the system on modern devices without even writing platform-specific code with the help of cross-platform development. This included web, mobile, desktops & tablets at the same time with the same codebase. Second one is handling data consistency with ubiquitous devices with the help of cloud infrastructure to make data safe and consistent more than ever. In the Development of this system Dart will be used as the primary programming language for cross-platform development. On the Cloud server system apache will be used as the web server and PHP as server side language. System will be using MySQL as the database server.

An Efficient VM-Level Scaling Scheme in an IaaS Cloud Computing System: A Queueing Theory Approach

  • Lee, Doo Ho
    • International Journal of Contents
    • /
    • v.13 no.2
    • /
    • pp.29-34
    • /
    • 2017
  • Cloud computing is becoming an effective and efficient way of computing resources and computing service integration. Through centralized management of resources and services, cloud computing delivers hosted services over the internet, such that access to shared hardware, software, applications, information, and all resources is elastically provided to the consumer on-demand. The main enabling technology for cloud computing is virtualization. Virtualization software creates a temporarily simulated or extended version of computing and network resources. The objectives of virtualization are as follows: first, to fully utilize the shared resources by applying partitioning and time-sharing; second, to centralize resource management; third, to enhance cloud data center agility and provide the required scalability and elasticity for on-demand capabilities; fourth, to improve testing and running software diagnostics on different operating platforms; and fifth, to improve the portability of applications and workload migration capabilities. One of the key features of cloud computing is elasticity. It enables users to create and remove virtual computing resources dynamically according to the changing demand, but it is not easy to make a decision regarding the right amount of resources. Indeed, proper provisioning of the resources to applications is an important issue in IaaS cloud computing. Most web applications encounter large and fluctuating task requests. In predictable situations, the resources can be provisioned in advance through capacity planning techniques. But in case of unplanned and spike requests, it would be desirable to automatically scale the resources, called auto-scaling, which adjusts the resources allocated to applications based on its need at any given time. This would free the user from the burden of deciding how many resources are necessary each time. In this work, we propose an analytical and efficient VM-level scaling scheme by modeling each VM in a data center as an M/M/1 processor sharing queue. Our proposed VM-level scaling scheme is validated via a numerical experiment.

Efficient Update Method for Cloud Storage System

  • Khill, Ki-Jeong;Lee, Sang-Min;Kim, Young-Kyun;Shin, Jaeryong;Song, Seokil
    • International Journal of Contents
    • /
    • v.10 no.1
    • /
    • pp.62-67
    • /
    • 2014
  • Usually, cloud storage systems are developed based on DFS (Distributed File System) for scalability and reliability reasons. DFSs are designed to improve throughput than IO response time, and therefore, they are appropriate for batch processing jobs. Recently, cloud storage systems have been used for update intensive applications such as OLTP and so on. However, in DFSs, in-place update operations are not carefully considered. Therefore, when updates are frequent, I/O performance of DFSs are degraded significantly. DFSs with RAID techniques have been proposed to improve their performance and reliability. Their performance degradation caused by frequent update operations can be more significant. In this paper, we propose an in-place update method for DFS RAID exploiting a differential logging technique. The proposed method reduces the I/O costs, network traffic and XOR operation costs for RAID. We demonstrate the efficiency of our proposed in-place update method through various experiments.