• 제목/요약/키워드: Cloud Modeling

Search Result 274, Processing Time 0.02 seconds

Automated Derivation of Cross-sectional Numerical Information of Retaining Walls Using Point Cloud Data (점군 데이터를 활용한 옹벽의 단면 수치 정보 자동화 도출)

  • Han, Jehee;Jang, Minseo;Han, Hyungseo;Jo, Hyoungjun;Shin, Do Hyoung
    • Journal of KIBIM
    • /
    • v.14 no.2
    • /
    • pp.1-12
    • /
    • 2024
  • The paper proposes a methodology that combines the Random Sample Consensus (RANSAC) algorithm and the Point Cloud Encoder-Decoder Network (PCEDNet) algorithm to automatically extract the length of infrastructure elements from point cloud data acquired through 3D LiDAR scans of retaining walls. This methodology is expected to significantly improve time and cost efficiency compared to traditional manual measurement techniques, which are crucial for the data-driven analysis required in the precision-demanding construction sector. Additionally, the extracted positional and dimensional data can contribute to enhanced accuracy and reliability in Scan-to-BIM processes. The results of this study are anticipated to provide important insights that could accelerate the digital transformation of the construction industry. This paper provides empirical data on how the integration of digital technologies can enhance efficiency and accuracy in the construction industry, and offers directions for future research and application.

Evaluating a Positioning Accuracy of Roadside Facilities DB Constructed from Mobile Mapping System Point Cloud (Mobile Mapping System Point Cloud를 활용한 도로주변 시설물 DB 구축 및 위치 정확도 평가)

  • KIM, Jae-Hak;LEE, Hong-Sool;ROH, Su-Lae;LEE, Dong-Ha
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.99-106
    • /
    • 2019
  • Technology that cannot be excluded from 4th industry is self-driving sector. The self-driving sector can be seen as a key set of technologies in the fourth industry, especially in the DB sector is getting more and more popular as a business. The DB, which was previously produced and managed in two dimensions, is now evolving into three dimensions. Among the data obtained by Mobile Mapping System () to produce the HD MAP necessary for self-driving, Point Cloud, which is LiDAR data, is used as a DB because it contains accurate location information. However, at present, it is not widely used as a base data for 3D modeling in addition to HD MAP production. In this study, MMS Point Cloud was used to extract facilities around the road and to overlay the location to expand the usability of Point Cloud. Building utility poles and communication poles DB from Point Cloud and comparing road name address base and location, it is believed that the accuracy of the location of the facility DB extracted from Point Cloud is also higher than the basic road name address of the road, It is necessary to study the expansion of the facility field sufficiently.

3D Measurement Method Based on Point Cloud and Solid Model for Urban SingleTrees (Point cloud와 solid model을 기반으로 한 단일수목 입체적 정량화기법 연구)

  • Park, Haekyung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1139-1149
    • /
    • 2017
  • Measuring tree's volume is very important input data of various environmental analysis modeling However, It's difficult to use economical and equipment to measure a fragmented small green space in the city. In addition, Trees are sensitive to seasons, so we need new and easier equipment and quantification methods for measuring trees than lidar for high frequency monitoring. In particular, the tree's size in a city affect management costs, ecosystem services, safety, and so need to be managed and informed on the individual tree-based. In this study, we aim to acquire image data with UAV(Unmanned Aerial Vehicle), which can be operated at low cost and frequently, and quickly and easily quantify a single tree using SfM-MVS(Structure from Motion-Multi View Stereo), and we evaluate the impact of reducing number of images on the point density of point clouds generated from SfM-MVS and the quantification of single trees. Also, We used the Watertight model to estimate the volume of a single tree and to shape it into a 3D structure and compare it with the quantification results of 3 different type of 3D models. The results of the analysis show that UAV, SfM-MVS and solid model can quantify and shape a single tree with low cost and high time resolution easily. This study is only for a single tree, Therefore, in order to apply it to a larger scale, it is necessary to follow up research to develop it, such as convergence with various spatial information data, improvement of quantification technique and flight plan for enlarging green space.

Definition of 3D Modeling Level of Detail in BIM Regeneration Through Reverse Engineering - Case Study on 3D Modeling Using Terrestrial LiDAR - (역설계를 통해 BIM 구축시에 3D 모델링에 대한 세밀도(LoD) 정립 - 지상 LiDAR 활용한 3D 모델링 연구 중심 -)

  • Chae, Jae-Hyun;Lee, Ji-Yeong
    • Journal of KIBIM
    • /
    • v.7 no.4
    • /
    • pp.8-20
    • /
    • 2017
  • When it comes to set up the BIM through the reverse engineering, the level of detail(LoD) required for finalized outcomes is different from each purpose. Therefore, it is necessary to establish some concrete criteria which describe the definition of LoDs on 3D modeling for the purpose of each reverse engineering. This research shows the criteria of the 1) positional accuracy, 2) generalization level, 3) scale level, 4) scope of description, and 5) the area available for application by classifying LoD from 1 to 6 on 3D modeling for each purpose of reverse engineering. Moreover, through applying those criteria for the 3D point cloud dataset of building made by terrestrial LiDAR, this research finds out the working hour of 3D modeling of reverse engineering by each LoDs according to defined LoD criteria for each level. It is expected that those findings, how those criteria of LoD on reverse engineering are utilized for modeling-workers to decide whether the outcomes can be suitable for their budget, applicable fields or not, would contribute to help them as a basic information.

A Prototype BIM Server based viewer for Cloud Computing BIM Services (클라우드 컴퓨팅 기반 BIM 서비스를 위한 BIM 서버 기반의 뷰어 개발)

  • Yoon, Su-Won;Kim, Byung-Kon;Choi, Jong-Moon;Kwon, Soon-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1719-1730
    • /
    • 2013
  • Recently BIM technology has been expanded for using in construction project. However its spread has been delayed than the initial expectations, due to the high-cost of BIM infrastructure development, the lack of regulations, the lack of process and so forth. Therefore, this research proposes the cloud computing based BIM service for saving the cost of BIM infrastructure development and providing various BIM Services to meet the domestic process. In order to achieve this, we perform a survey on the cloud computing based BIM service and develope the prototype system as the core technology of proposed service. The developed the prototype system consists of the IFC based BIM server for IaaS (Infrastructure as a Service) and the viewer for SaaS (Software as a Service). This research also conducts the performance test for their applicability and verifies that the results of this research can be used as core components in the cloud computing based BIM service.

Multi Point Cloud Integration based on Observation Vectors between Stereo Images (스테레오 영상 간 관측 벡터에 기반한 다중 포인트 클라우드 통합)

  • Yoon, Wansang;Kim, Han-gyeol;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.727-736
    • /
    • 2019
  • In this paper, we present how to create a point cloud for a target area using multiple unmanned aerial vehicle images and to remove the gaps and overlapping points between datasets. For this purpose, first, IBA (Incremental Bundle Adjustment) technique was applied to correct the position and attitude of UAV platform. We generate a point cloud by using MDR (Multi-Dimensional Relaxation) matching technique. Next, we register point clouds based on observation vectors between stereo images by doing this we remove gaps between point clouds which are generated from different stereo pairs. Finally, we applied an occupancy grids based integration algorithm to remove duplicated points to create an integrated point cloud. The experiments were performed using UAV images, and our experiments show that it is possible to remove gaps and duplicate points between point clouds generated from different stereo pairs.

Performance Evaluation of Denoising Algorithms for the 3D Construction Digital Map (건설현장 적용을 위한 디지털맵 노이즈 제거 알고리즘 성능평가)

  • Park, Su-Yeul;Kim, Seok
    • Journal of KIBIM
    • /
    • v.10 no.4
    • /
    • pp.32-39
    • /
    • 2020
  • In recent years, the construction industry is getting bigger and more complex, so it is becoming difficult to acquire point cloud data for construction equipments and workers. Point cloud data is measured using a drone and MMS(Mobile Mapping System), and the collected point cloud data is used to create a 3D digital map. In particular, the construction site is located at outdoors and there are many irregular terrains, making it difficult to collect point cloud data. For these reasons, adopting a noise reduction algorithm suitable for the characteristics of the construction industry can affect the improvement of the analysis accuracy of digital maps. This is related to various environments and variables of the construction site. Therefore, this study reviewed and analyzed the existing research and techniques on the noise reduction algorithm. And based on the results of literature review, performance evaluation of major noise reduction algorithms was conducted for digital maps of construction sites. As a result of the performance evaluation in this study, the voxel grid algorithm showed relatively less execution time than the statistical outlier removal algorithm. In addition, analysis results in slope, space, and earth walls of the construction site digital map showed that the voxel grid algorithm was relatively superior to the statistical outlier removal algorithm and that the noise removal performance of voxel grid algorithm was superior and the object preservation ability was also superior. In the future, based on the results reviewed through the performance evaluation of the noise reduction algorithm of this study, we will develop a noise reduction algorithm for 3D point cloud data that reflects the characteristics of the construction site.

Point Cloud Segmentation Method Considering Wall Finishing Information Using 2D Material Segmentation and Back Projection

  • Sung-Jae Bae;Minji Song;Eunji Choi;Chan-Jin Kim;Junbeom Park;Young suk Kim;Jung-Yeol Kim
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.613-620
    • /
    • 2024
  • Progress monitoring and quality control using as-built Building Information Modeling (BIM) are actively applied to construction industry. In order to effectively perform these management works, Scan-to-BIM is a key process to create as-built BIM models. In the Scan-to-BIM process point cloud segmentation is a critical task to identify object semantic information from point cloud data. While segmentation methods of main structural components such as walls, slabs, columns, and ceilings are actively studied and used for the management works, segmentation considering the finishing works of these components is still challenging. Therefore, this study proposed a point cloud segmentation method that considered wall finishing information, utilizing both point clouds and 2D images acquired from terrestrial laser scanners. The proposed method is composed of three main steps: 1) Segmenting as-built point clouds of main structural components through the comparison with as-planned BIM. 2) Applying a SegFormer material segmentation model that trained with wall finishing data (2D images) from terrestrial laser scanners to segment wall finishing information in 2D images. 3) Labelling the point cloud with recognized wall finishing information using back projection based on camera pose data. The proposed method is expected to contribute to the enchantment of the level of details (LoD) in as-built BIM and be useful in progress monitoring and quality control of finishing works.

U-Net Cloud Detection for the SPARCS Cloud Dataset from Landsat 8 Images (Landsat 8 기반 SPARCS 데이터셋을 이용한 U-Net 구름탐지)

  • Kang, Jonggu;Kim, Geunah;Jeong, Yemin;Kim, Seoyeon;Youn, Youjeong;Cho, Soobin;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1149-1161
    • /
    • 2021
  • With a trend of the utilization of computer vision for satellite images, cloud detection using deep learning also attracts attention recently. In this study, we conducted a U-Net cloud detection modeling using SPARCS (Spatial Procedures for Automated Removal of Cloud and Shadow) Cloud Dataset with the image data augmentation and carried out 10-fold cross-validation for an objective assessment of the model. Asthe result of the blind test for 1800 datasets with 512 by 512 pixels, relatively high performance with the accuracy of 0.821, the precision of 0.847, the recall of 0.821, the F1-score of 0.831, and the IoU (Intersection over Union) of 0.723. Although 14.5% of actual cloud shadows were misclassified as land, and 19.7% of actual clouds were misidentified as land, this can be overcome by increasing the quality and quantity of label datasets. Moreover, a state-of-the-art DeepLab V3+ model and the NAS (Neural Architecture Search) optimization technique can help the cloud detection for CAS500 (Compact Advanced Satellite 500) in South Korea.

Combining Conditional Generative Adversarial Network and Regression-based Calibration for Cloud Removal of Optical Imagery (광학 영상의 구름 제거를 위한 조건부 생성적 적대 신경망과 회귀 기반 보정의 결합)

  • Kwak, Geun-Ho;Park, Soyeon;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1357-1369
    • /
    • 2022
  • Cloud removal is an essential image processing step for any task requiring time-series optical images, such as vegetation monitoring and change detection. This paper presents a two-stage cloud removal method that combines conditional generative adversarial networks (cGANs) with regression-based calibration to construct a cloud-free time-series optical image set. In the first stage, the cGANs generate initial prediction results using quantitative relationships between optical and synthetic aperture radar images. In the second stage, the relationships between the predicted results and the actual values in non-cloud areas are first quantified via random forest-based regression modeling and then used to calibrate the cGAN-based prediction results. The potential of the proposed method was evaluated from a cloud removal experiment using Sentinel-2 and COSMO-SkyMed images in the rice field cultivation area of Gimje. The cGAN model could effectively predict the reflectance values in the cloud-contaminated rice fields where severe changes in physical surface conditions happened. Moreover, the regression-based calibration in the second stage could improve the prediction accuracy, compared with a regression-based cloud removal method using a supplementary image that is temporally distant from the target image. These experimental results indicate that the proposed method can be effectively applied to restore cloud-contaminated areas when cloud-free optical images are unavailable for environmental monitoring.