• Title/Summary/Keyword: Cloud Modeling

Search Result 264, Processing Time 0.024 seconds

A Prototype BIM Server based viewer for Cloud Computing BIM Services (클라우드 컴퓨팅 기반 BIM 서비스를 위한 BIM 서버 기반의 뷰어 개발)

  • Yoon, Su-Won;Kim, Byung-Kon;Choi, Jong-Moon;Kwon, Soon-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1719-1730
    • /
    • 2013
  • Recently BIM technology has been expanded for using in construction project. However its spread has been delayed than the initial expectations, due to the high-cost of BIM infrastructure development, the lack of regulations, the lack of process and so forth. Therefore, this research proposes the cloud computing based BIM service for saving the cost of BIM infrastructure development and providing various BIM Services to meet the domestic process. In order to achieve this, we perform a survey on the cloud computing based BIM service and develope the prototype system as the core technology of proposed service. The developed the prototype system consists of the IFC based BIM server for IaaS (Infrastructure as a Service) and the viewer for SaaS (Software as a Service). This research also conducts the performance test for their applicability and verifies that the results of this research can be used as core components in the cloud computing based BIM service.

Multi Point Cloud Integration based on Observation Vectors between Stereo Images (스테레오 영상 간 관측 벡터에 기반한 다중 포인트 클라우드 통합)

  • Yoon, Wansang;Kim, Han-gyeol;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.727-736
    • /
    • 2019
  • In this paper, we present how to create a point cloud for a target area using multiple unmanned aerial vehicle images and to remove the gaps and overlapping points between datasets. For this purpose, first, IBA (Incremental Bundle Adjustment) technique was applied to correct the position and attitude of UAV platform. We generate a point cloud by using MDR (Multi-Dimensional Relaxation) matching technique. Next, we register point clouds based on observation vectors between stereo images by doing this we remove gaps between point clouds which are generated from different stereo pairs. Finally, we applied an occupancy grids based integration algorithm to remove duplicated points to create an integrated point cloud. The experiments were performed using UAV images, and our experiments show that it is possible to remove gaps and duplicate points between point clouds generated from different stereo pairs.

Performance Evaluation of Denoising Algorithms for the 3D Construction Digital Map (건설현장 적용을 위한 디지털맵 노이즈 제거 알고리즘 성능평가)

  • Park, Su-Yeul;Kim, Seok
    • Journal of KIBIM
    • /
    • v.10 no.4
    • /
    • pp.32-39
    • /
    • 2020
  • In recent years, the construction industry is getting bigger and more complex, so it is becoming difficult to acquire point cloud data for construction equipments and workers. Point cloud data is measured using a drone and MMS(Mobile Mapping System), and the collected point cloud data is used to create a 3D digital map. In particular, the construction site is located at outdoors and there are many irregular terrains, making it difficult to collect point cloud data. For these reasons, adopting a noise reduction algorithm suitable for the characteristics of the construction industry can affect the improvement of the analysis accuracy of digital maps. This is related to various environments and variables of the construction site. Therefore, this study reviewed and analyzed the existing research and techniques on the noise reduction algorithm. And based on the results of literature review, performance evaluation of major noise reduction algorithms was conducted for digital maps of construction sites. As a result of the performance evaluation in this study, the voxel grid algorithm showed relatively less execution time than the statistical outlier removal algorithm. In addition, analysis results in slope, space, and earth walls of the construction site digital map showed that the voxel grid algorithm was relatively superior to the statistical outlier removal algorithm and that the noise removal performance of voxel grid algorithm was superior and the object preservation ability was also superior. In the future, based on the results reviewed through the performance evaluation of the noise reduction algorithm of this study, we will develop a noise reduction algorithm for 3D point cloud data that reflects the characteristics of the construction site.

U-Net Cloud Detection for the SPARCS Cloud Dataset from Landsat 8 Images (Landsat 8 기반 SPARCS 데이터셋을 이용한 U-Net 구름탐지)

  • Kang, Jonggu;Kim, Geunah;Jeong, Yemin;Kim, Seoyeon;Youn, Youjeong;Cho, Soobin;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1149-1161
    • /
    • 2021
  • With a trend of the utilization of computer vision for satellite images, cloud detection using deep learning also attracts attention recently. In this study, we conducted a U-Net cloud detection modeling using SPARCS (Spatial Procedures for Automated Removal of Cloud and Shadow) Cloud Dataset with the image data augmentation and carried out 10-fold cross-validation for an objective assessment of the model. Asthe result of the blind test for 1800 datasets with 512 by 512 pixels, relatively high performance with the accuracy of 0.821, the precision of 0.847, the recall of 0.821, the F1-score of 0.831, and the IoU (Intersection over Union) of 0.723. Although 14.5% of actual cloud shadows were misclassified as land, and 19.7% of actual clouds were misidentified as land, this can be overcome by increasing the quality and quantity of label datasets. Moreover, a state-of-the-art DeepLab V3+ model and the NAS (Neural Architecture Search) optimization technique can help the cloud detection for CAS500 (Compact Advanced Satellite 500) in South Korea.

Combining Conditional Generative Adversarial Network and Regression-based Calibration for Cloud Removal of Optical Imagery (광학 영상의 구름 제거를 위한 조건부 생성적 적대 신경망과 회귀 기반 보정의 결합)

  • Kwak, Geun-Ho;Park, Soyeon;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1357-1369
    • /
    • 2022
  • Cloud removal is an essential image processing step for any task requiring time-series optical images, such as vegetation monitoring and change detection. This paper presents a two-stage cloud removal method that combines conditional generative adversarial networks (cGANs) with regression-based calibration to construct a cloud-free time-series optical image set. In the first stage, the cGANs generate initial prediction results using quantitative relationships between optical and synthetic aperture radar images. In the second stage, the relationships between the predicted results and the actual values in non-cloud areas are first quantified via random forest-based regression modeling and then used to calibrate the cGAN-based prediction results. The potential of the proposed method was evaluated from a cloud removal experiment using Sentinel-2 and COSMO-SkyMed images in the rice field cultivation area of Gimje. The cGAN model could effectively predict the reflectance values in the cloud-contaminated rice fields where severe changes in physical surface conditions happened. Moreover, the regression-based calibration in the second stage could improve the prediction accuracy, compared with a regression-based cloud removal method using a supplementary image that is temporally distant from the target image. These experimental results indicate that the proposed method can be effectively applied to restore cloud-contaminated areas when cloud-free optical images are unavailable for environmental monitoring.

Study of Structure Modeling from Terrestrial LIDAR Data (지상라이다 데이터를 이용한 구조물 모델링 기법 연구)

  • Lee, Kyung-Keun;Jung, Kyeong-Hoon;Kim, Ki-Doo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.8-15
    • /
    • 2011
  • In this paper, we propose a new structure modeling algorithm from 3D cloud points of terrestrial LADAR data. Terrestrial LIDAR data have various obstacles which make it difficult to apply conventional algorithms designed for air-borne LIDAR data. In the proposed algorithm, the field data are separated into several clusters by adopting the structure extraction method which uses color information and Hough transform. And cluster based Delaunay triangulation technique is sequentially applied to model the artificial structure. Each cluster has its own priority and it makes possible to determine whether a cluster needs to be considered not. The proposed algorithm not only minimizes the effects of noise data but also interactively controls the level of modeling by using cluster-based approach.

An Analysis of Artificial Intelligence Education Research Trends Based on Topic Modeling

  • You-Jung Ko
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.2
    • /
    • pp.197-209
    • /
    • 2024
  • This study aimed to analyze recent research trends in Artificial Intelligence (AI) education within South Korea with the overarching objective of exploring the future direction of AI education. For this purpose, an analysis of 697 papers related to AI education published in Research Information Sharing Service (RISS) from 2016 to November 2023 were analyzed using word cloud and Latent Dirichlet Allocation (LDA) topic modeling technique. As a result of the analysis, six major topics were identified: generative AI utilization education, AI ethics education, AI convergence education, teacher perceptions and roles in AI utilization, AI literacy development in university education, and AI-based education and research directions. Based on these findings, I proposed several suggestions, (1) including expanding the use of generative AI in various subjects, (2) establishing ethical guidelines for AI use, (3) evaluating the long-term impact of AI education, (4) enhancing teachers' ability to use AI in higher education, (5) diversifying the curriculum of AI education in universities, (6) analyzing the trend of AI research, and developing an educational platform.

A Comparative Analysis between Rigorous and Approximate Approaches for LiDAR System Calibration

  • Kersting, Ana Paula;Habib, Ayman
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.593-605
    • /
    • 2012
  • LiDAR systems provide dense and accurate topographic information. A pre-requisite to achieving the potential accuracy of LiDAR is having a proper system calibration, which aims at estimating all the systematic errors in the system measurements and the mounting parameters relating the different components. This paper presents a rigorous and two approximate methods for LiDAR system calibration. The rigorous approach makes use of the LiDAR equation and the system raw measurements. The approximate approaches utilize simplified LiDAR equations using some assumptions, which allow for less strict requirements regarding the raw measurements. The first presented approximate method, denoted as quasi-rigorous, assumes that we are dealing with a vertical platform (i.e., small pitch and roll angles). This method requires time-tagged point cloud and trajectory position data. The second approximate method, denoted as simplified, assumes that we are dealing with parallel strips, vertical platform, and minor terrain elevation variations compared to the flying height above ground. Such method can be performed using the LiDAR point cloud only. Experimental results using a real dataset, whose characteristics deviate to some extent from the utilized assumptions in the approximate methods, are presented to provide a comparative analysis of the outcome from the introduced methods.

A Study on City Brand Evaluation Method Using Text Mining : Focused on News Media (텍스트 마이닝 기법을 활용한 도시 브랜드 평가방법론 연구 : 뉴스미디어를 중심으로)

  • Yoon, Seungsik;Shin, Minchul;Kang, Juyoung
    • Journal of Information Technology Services
    • /
    • v.18 no.1
    • /
    • pp.153-171
    • /
    • 2019
  • Competition among cities has become fierce with decentralization and globalization, and each city tries to establish a brand image of the city to build its competitiveness and implement its policies based on it. At this time, surveys, expert interviews, etc. are commonly used to establish city brands. These methods are difficult to establish as sampling methods an empirical component, the biggest component of a city brand. In this paper, therefore, based on the precedent research's urban brand measurement and components, the words representing each city image property were extracted and relocated to five indicators to form the evaluation index. The constructed indicators have been validated through the review of three experts. Through the index, we analyzed the brands of four cities, Ulsan, Incheon, Yeosu, and Gyeongju, and identified the factors by using Topic Modeling and Word Cloud. This methodology is expected to reduce costs and monitor timely in identifying and analyzing urban brand images in the future.

Automatic 3D Object Digitizing and Its Accuracy Using Point Cloud Data (점군집 데이터에 의한 3차원 객체도화의 자동화와 정확도)

  • Yoo, Eun-Jin;Yun, Seong-Goo;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Recent spatial information technology has brought innovative improvement in both efficiency and accuracy. Especially, airborne LiDAR system(ALS) is one of the practical sensors to obtain 3D spatial information. Constructing reliable 3D spatial data infrastructure is world wide issue and most of the significant tasks involved with modeling manmade objects. This study aims to create a test data set for developing automatic building modeling methods by simulating point cloud data. The data simulates various roof types including gable, pyramid, dome, and combined polyhedron shapes. In this study, a robust bottom-up method to segment surface patches was proposed for generating building models automatically by determining model key points of the objects. The results show that building roofs composed of the segmented patches could be modeled by appropriate mathematical functions and the model key points. Thus, 3D digitizing man made objects could be automated for digital mapping purpose.