• Title/Summary/Keyword: Cloud Modeling

Search Result 264, Processing Time 0.027 seconds

3D Shape Descriptor for Segmenting Point Cloud Data

  • Park, So Young;Yoo, Eun Jin;Lee, Dong-Cheon;Lee, Yong Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.643-651
    • /
    • 2012
  • Object recognition belongs to high-level processing that is one of the difficult and challenging tasks in computer vision. Digital photogrammetry based on the computer vision paradigm has begun to emerge in the middle of 1980s. However, the ultimate goal of digital photogrammetry - intelligent and autonomous processing of surface reconstruction - is not achieved yet. Object recognition requires a robust shape description about objects. However, most of the shape descriptors aim to apply 2D space for image data. Therefore, such descriptors have to be extended to deal with 3D data such as LiDAR(Light Detection and Ranging) data obtained from ALS(Airborne Laser Scanner) system. This paper introduces extension of chain code to 3D object space with hierarchical approach for segmenting point cloud data. The experiment demonstrates effectiveness and robustness of the proposed method for shape description and point cloud data segmentation. Geometric characteristics of various roof types are well described that will be eventually base for the object modeling. Segmentation accuracy of the simulated data was evaluated by measuring coordinates of the corners on the segmented patch boundaries. The overall RMSE(Root Mean Square Error) is equivalent to the average distance between points, i.e., GSD(Ground Sampling Distance).

Classification of Public Perceptions toward Smog Risks on Twitter Using Topic Modeling (Topic Modeling을 이용한 Twitter상에서 스모그 리스크에 관한 대중 인식 분류 연구)

  • Kim, Yun-Ki
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.53-79
    • /
    • 2017
  • The main purpose of this study was to detect and classify public perceptions toward smog disasters on Twitter using topic modeling. To help achieve these objectives and to identify gaps in the literature, this research carried out a literature review on public opinions toward smog disasters and topic modeling. The literature review indicated that there are huge gaps in the related literature. In this research, this author formed five research questions to fill the gaps in the literature. And then this study performed research steps such as data extraction, word cloud analysis on the cleaned data, building the network of terms, correlation analysis, hierarchical cluster analysis, topic modeling with the LDA, and stream graphs to answer those research questions. The results of this research revealed that there exist huge differences in the most frequent terms, the shapes of terms network, types of correlation, and smog-related topics changing patterns between New York and London. Therefore, this author could find positive answers to the four of the five research questions and a partially positive answer to Research question 4. Finally, on the basis of the results, this author suggested policy implications and recommendations for future study.

3D Reconstruction of Structure Fusion-Based on UAS and Terrestrial LiDAR (UAS 및 지상 LiDAR 융합기반 건축물의 3D 재현)

  • Han, Seung-Hee;Kang, Joon-Oh;Oh, Seong-Jong;Lee, Yong-Chang
    • Journal of Urban Science
    • /
    • v.7 no.2
    • /
    • pp.53-60
    • /
    • 2018
  • Digital Twin is a technology that creates a photocopy of real-world objects on a computer and analyzes the past and present operational status by fusing the structure, context, and operation of various physical systems with property information, and predicts the future society's countermeasures. In particular, 3D rendering technology (UAS, LiDAR, GNSS, etc.) is a core technology in digital twin. so, the research and application are actively performed in the industry in recent years. However, UAS (Unmanned Aerial System) and LiDAR (Light Detection And Ranging) have to be solved by compensating blind spot which is not reconstructed according to the object shape. In addition, the terrestrial LiDAR can acquire the point cloud of the object more precisely and quickly at a short distance, but a blind spot is generated at the upper part of the object, thereby imposing restrictions on the forward digital twin modeling. The UAS is capable of modeling a specific range of objects with high accuracy by using high resolution images at low altitudes, and has the advantage of generating a high density point group based on SfM (Structure-from-Motion) image analysis technology. However, It is relatively far from the target LiDAR than the terrestrial LiDAR, and it takes time to analyze the image. In particular, it is necessary to reduce the accuracy of the side part and compensate the blind spot. By re-optimizing it after fusion with UAS and Terrestrial LiDAR, the residual error of each modeling method was compensated and the mutual correction result was obtained. The accuracy of fusion-based 3D model is less than 1cm and it is expected to be useful for digital twin construction.

The Improvement of Point Cloud Data Processing Program For Efficient Earthwork BIM Design (토공 BIM 설계 효율화를 위한 포인트 클라우드 데이터 처리 프로그램 개선에 관한 연구)

  • Kim, Heeyeon;Kim, Jeonghwan;Seo, Jongwon;Shim, Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.5
    • /
    • pp.55-63
    • /
    • 2020
  • Earthwork automation has emerged as a promising technology in the construction industry, and the application of earthwork automation technology is starting from the acquisition and processing of point cloud data of the site. Point cloud data has more than a million data due to vast extent of the construction site, and the processing time of the original point cloud data is critical because it takes tens or hundreds of hours to generate a Digital Terrain Model (DTM), and enhancement of the processing time can largely impact on the efficiency of the modeling. Currently, a benchmark program (BP) is actively used for the purpose of both point cloud data processing and BIM design as an integrated program in Korea, however, there are some aspects to be modified and refined. This study modified the BP, and developed an updated program by adopting a compile-based development environment, newly designed UI/UX, and OpenGL while maintaining existing PCD processing functions, and expended compatibility of the PCD file formats. We conducted a comparative test in terms of loading speed with different number of point cloud data, and the results showed that 92 to 99% performance increase was found in the developed program. This program can be used as a foundation for the development of a program that reduces the gap between design and construction by integrating PCD and earthwork BIM functions in the future.

Investigations on Techniques and Applications of Text Analytics (텍스트 분석 기술 및 활용 동향)

  • Kim, Namgyu;Lee, Donghoon;Choi, Hochang;Wong, William Xiu Shun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.471-492
    • /
    • 2017
  • The demand and interest in big data analytics are increasing rapidly. The concepts around big data include not only existing structured data, but also various kinds of unstructured data such as text, images, videos, and logs. Among the various types of unstructured data, text data have gained particular attention because it is the most representative method to describe and deliver information. Text analysis is generally performed in the following order: document collection, parsing and filtering, structuring, frequency analysis, and similarity analysis. The results of the analysis can be displayed through word cloud, word network, topic modeling, document classification, and semantic analysis. Notably, there is an increasing demand to identify trending topics from the rapidly increasing text data generated through various social media. Thus, research on and applications of topic modeling have been actively carried out in various fields since topic modeling is able to extract the core topics from a huge amount of unstructured text documents and provide the document groups for each different topic. In this paper, we review the major techniques and research trends of text analysis. Further, we also introduce some cases of applications that solve the problems in various fields by using topic modeling.

3D Mesh Creation using 2D Delaunay Triangulation of 3D Point Clouds (2차원 딜로니 삼각화를 이용한 3차원 메시 생성)

  • Choi, Ji-Hoon;Yoon, Jong-Hyun;Park, Jong-Seung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.13 no.4
    • /
    • pp.21-27
    • /
    • 2007
  • The 3D Delaunay triangulation is the most widely used method for the mesh creation via the triangulation of a 3D point cloud. However, the method involves a heavy computational cost and, hence, in many interactive applications, it is not appropriate for surface triangulation. In this paper, we propose an efficient triangulation method to create a surface mesh from a 3D point cloud. We divide a set of object points into multiple subsets and apply the 2D Delaunay triangulation to each subset. A given 3D point cloud is cut into slices with respect to the OBB(Oriented Bounding Box) of the point set. The 2D Delaunay triangulation is applied to each subset producing a partial triangulation. The sum of the partial triangulations constitutes the global mesh. As a postprocessing process, we eliminate false edges introduced in the split steps of the triangulation and improve the results. The proposed method can be effectively applied to various image-based modeling applications.

  • PDF

A Basic Study on Data Structure and Process of Point Cloud based on Terrestrial LiDAR for Guideline of Reverse Engineering of Architectural MEP (건축 MEP 역설계 지침을 위한 라이다 기반 포인트 클라우드 데이터 자료 구조 및 프로세스 기초 연구)

  • Kim, Ji-Eun;Park, Sang-Chul;Kang, Tae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5695-5706
    • /
    • 2015
  • Recently adoption of BIM technology for building renovation and remodeling has been increased in construction industry. However most buildings have trouble in 2D drawing-based BIM modeling, because 2D drawings have not been updated real situations continually. Applying reverse engineering, this study analysed the point cloud data structure and the process for guideline of reverse engineering of architectural MEP, and deducted the relating considerations. To active usage of 3D scanning technique in domestic, the objective of this study is to analyze the point cloud data processing from real site with terrestrial LiDAR and the process from data gathering to data acquisition.

CANVAS: A Cloud-based Research Data Analytics Environment and System

  • Kim, Seongchan;Song, Sa-kwang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.117-124
    • /
    • 2021
  • In this paper, we propose CANVAS (Creative ANalytics enVironment And System), an analytics system of the National Research Data Platform (DataON). CANVAS is a personalized analytics cloud service for researchers who need computing resources and tools for research data analysis. CANVAS is designed in consideration of scalability based on micro-services architecture and was built on top of open-source software such as eGovernment Standard framework (Spring framework), Kubernetes, and JupyterLab. The built system provides personalized analytics environments to multiple users, enabling high-speed and large-capacity analysis by utilizing high-performance cloud infrastructure (CPU/GPU). More specifically, modeling and processing data is possible in JupyterLab or GUI workflow environment. Since CANVAS shares data with DataON, the research data registered by users or downloaded data can be directly processed in the CANVAS. As a result, CANVAS enhances the convenience of data analysis for users in DataON and contributes to the sharing and utilization of research data.

Automated Construction of IndoorGML Data Using Point Cloud (포인트 클라우드를 이용한 IndoorGML 데이터의 자동적 구축)

  • Kim, Sung-Hwan;Li, Ki-Joune
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.611-622
    • /
    • 2020
  • As the advancement of technologies on indoor positioning systems and measuring devices such as LiDAR (Light Detection And Ranging) and cameras, the demands on analyzing and searching indoor spaces and visualization services via virtual and augmented reality have rapidly increasing. To this end, it is necessary to model 3D objects from measured data from real-world structures. In addition, it is important to store these structured data in standardized formats to improve the applicability and interoperability. In this paper, we propose a method to construct IndoorGML data, which is an international standard for indoor modeling, from point cloud data acquired from LiDAR sensors. After examining considerations that should be addressed in IndoorGML data, we present a construction method, which consists of free space extraction and connectivity detection processes. With experimental results, we demonstrate that the proposed method can effectively reconstruct the 3D model from point cloud.

Curved Feature Modeling and Accuracy Analysis Using Point Cloud Data (점군집 데이터를 이용한 곡면객체 모델링 및 정확도 분석)

  • Lee, Dae Geon;Yoo, Eun Jin;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.3
    • /
    • pp.243-251
    • /
    • 2016
  • LiDAR data processing steps include noise removal, filtering, classification, segmentation, shape recognition, modeling, and quality assessment. This paper focuses on modeling and accuracy evaluation of 3D objects with curved surfaces. The appropriate modeling functions were determined by analyzing surface patch shape. Existing methods for modeling curved surface features require linearization, initial approximation, and iteration of the non-linear functions. However, proposed method could directly estimate the unknown parameters of the modeling functions. The results demonstrate feasibility of the proposed method. The proposed method was applied to the simulated and real building data of hemi-spherical and semi-cylindrical surfaces. The parameters and accuracy of the modeling functions were estimated. It is expected that the proposed method would contribute to automatic modeling of various objects.