• Title/Summary/Keyword: Cloud Filter

Search Result 60, Processing Time 0.021 seconds

Design and Evaluation of a Hierarchical Hybrid Content Delivery Scheme using Bloom Filter in Vehicular Cloud Environments (차량 클라우드 환경에서 블룸 필터를 이용한 계층적 하이브리드 콘텐츠 전송 방법의 설계 및 평가)

  • Bae, Ihn-Han
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1597-1608
    • /
    • 2016
  • Recently, a number of solutions were proposed to address the challenges and issues of vehicular networks. Vehicular Cloud Computing (VCC) is one of the solutions. The vehicular cloud computing is a new hybrid technology that has a remarkable impact on traffic management and road safety by instantly using vehicular resources. In this paper, we study an important vehicular cloud service, content-based delivery, that allows future vehicular cloud applications to store, share and search data totally within the cloud. We design a VCC-based system architecture for efficient sharing of vehicular contents, and propose a Hierarchical Hybrid Content Delivery scheme using Bloom Filter (H2CDBF) for efficient vehicular content delivery in Vehicular Ad-hoc Networks (VANETs). The performance of the proposed H2CDBF is evaluated through an analytical model, and is compared to the proactive content discovery scheme, Bloom-Filter Routing (BFR).

Cloud Storage Security Deduplication Scheme Based on Dynamic Bloom Filter

  • Yan, Xi-ai;Shi, Wei-qi;Tian, Hua
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1265-1276
    • /
    • 2019
  • Data deduplication is a common method to improve cloud storage efficiency and save network communication bandwidth, but it also brings a series of problems such as privacy disclosure and dictionary attacks. This paper proposes a secure deduplication scheme for cloud storage based on Bloom filter, and dynamically extends the standard Bloom filter. A public dynamic Bloom filter array (PDBFA) is constructed, which improves the efficiency of ownership proof, realizes the fast detection of duplicate data blocks and reduces the false positive rate of the system. In addition, in the process of file encryption and upload, the convergent key is encrypted twice, which can effectively prevent violent dictionary attacks. The experimental results show that the PDBFA scheme has the characteristics of low computational overhead and low false positive rate.

Point Cloud Classification Method for Mountainous Area (산악지역 점군자료 분류기법 연구)

  • Choi, Yun-Woong;Lee, Geun-Sang;Cho, Gi-Sung
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.387-388
    • /
    • 2010
  • There is no generalized and systematic method yet to data pre-processing for point cloud data classification even if there have been lots of previous studies such as local maxima filter, morphology filter, slope based filter and so on. Main focus of this study is to present classification method for bare ground information from LiDAR data for the mountainous area.

  • PDF

DETECTION AND MASKING OF CLOUD CONTAMINATION IN HIGH-RESOLUTION SST IMAGERY: A PRACTICAL AND EFFECTIVE METHOD FOR AUTOMATION

  • Hu, Chuanmin;Muller-Karger, Frank;Murch, Brock;Myhre, Douglas;Taylor, Judd;Luerssen, Remy;Moses, Christopher;Zhang, Caiyun
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.1011-1014
    • /
    • 2006
  • Coarse resolution (9 - 50 km pixels) Sea Surface Temperature satellite data are frequently considered adequate for open ocean research. However, coastal regions, including coral reef, estuarine and mesoscale upwelling regions require high-resolution (1-km pixel) SST data. The AVHRR SST data often suffer from navigation errors of several kilometres and still require manual navigation adjustments. The second serious problem is faulty and ineffective cloud-detection algorithms used operationally; many of these are based on radiance thresholds and moving window tests. With these methods, increasing sensitivity leads to masking of valid pixels. These errors lead to significant cold pixel biases and hamper image compositing, anomaly detection, and time-series analysis. Here, after manual navigation of over 40,000 AVHRR images, we implemented a new cloud filter that differs from other published methods. The filter first compares a pixel value with a climatological value built from the historical database, and then tests it against a time-based median value derived for that pixel from all satellite passes collected within ${\pm}3$ days. If the difference is larger than a predefined threshold, the pixel is flagged as cloud. We tested the method and compared to in situ SST from several shallow water buoys in the Florida Keys. Cloud statistics from all satellite sensors (AVHRR, MODIS) shows that a climatology filter with a $4^{\circ}C$ threshold and a median filter threshold of $2^{\circ}C$ are effective and accurate to filter clouds without masking good data. RMS difference between concurrent in situ and satellite SST data for the shallow waters (< 10 m bottom depth) is < $1^{\circ}C$, with only a small bias. The filter has been applied to the entire series of high-resolution SST data since1993 (including MODIS SST data since 2003), and a climatology is constructed to serve as the baseline to detect anomaly events.

  • PDF

AutoScale: Adaptive QoS-Aware Container-based Cloud Applications Scheduling Framework

  • Sun, Yao;Meng, Lun;Song, Yunkui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2824-2837
    • /
    • 2019
  • Container technologies are widely used in infrastructures to deploy and manage applications in cloud computing environment. As containers are light-weight software, the cluster of cloud applications can easily scale up or down to provide Internet-based services. Container-based applications can well deal with fluctuate workloads by dynamically adjusting physical resources. Current works of scheduling applications often construct applications' performance models with collected historical training data, but these works with static models cannot self-adjust physical resources to meet the dynamic requirements of cloud computing. Thus, we propose a self-adaptive automatic container scheduling framework AutoScale for cloud applications, which uses a feedback-based approach to adjust physical resources by extending, contracting and migrating containers. First, a queue-based performance model for cloud applications is proposed to correlate performance and workloads. Second, a fuzzy Kalman filter is used to adjust the performance model's parameters to accurately predict applications' response time. Third, extension, contraction and migration strategies based on predicted response time are designed to schedule containers at runtime. Furthermore, we have implemented a framework AutoScale with container scheduling strategies. By comparing with current approaches in an experiment environment deployed with typical applications, we observe that AutoScale has advantages in predicting response time, and scheduling containers to guarantee that response time keeps stable in fluctuant workloads.

Concealed Policy and Ciphertext Cryptography of Attributes with Keyword Searching for Searching and Filtering Encrypted Cloud Email

  • Alhumaidi, Hind;Alsuwat, Hatim
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.212-222
    • /
    • 2022
  • There has been a rapid increase in the use of cloud email services. As a result, email encryption has become more commonplace as concerns about cloud privacy and security grow. Nevertheless, this increase in usage is creating the challenge of how to effectively be searching and filtering the encrypted emails. They are popular technologies of solving the issue of the encrypted emails searching through searchable public key encryption. However, the problem of encrypted email filtering remains to be solved. As a new approach to finding and filtering encrypted emails in the cloud, we propose a ciphertext-based encrypted policy attribute-based encryption scheme and keyword search procedure based on hidden policy ciphertext. This feature allows the user of searching using some encrypted emails keywords in the cloud as well as allowing the emails filter-based server toward filter the content of the encrypted emails, similar to the traditional email keyword filtering service. By utilizing composite order bilinear groups, a hidden policy system has been successfully demonstrated to be secure by our dual system encryption process. Proposed system can be used with other scenarios such as searching and filtering files as an applicable method.

3D Reconstruction Method for 3D Engraving Systems (3D 조각가공 시스템을 위한 3 차원 복원 방법)

  • Lee, Won-Seck;Chung, Sung-Chong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1204-1209
    • /
    • 2008
  • Design is important in the IT, digital appliance, and auto industries. Aesthetic and art images are being applied for better design satisfaction of the products. Various artistic image patterns are used to satisfy demand of design, but it takes much lead-time and effort to implement them for making dies and molds. In this paper, a hybrid reverse engineering method generating accurate 3D engraving models from 2D art images is proposed through image processing, 3D reconstruction, and NURBS interpolation methods. In order to generate the 3D model from the 2D artistic image, cloud points with z-depth are extracted according to intensity values of the image. An adaptive median filter and harmonic filter are used to obtain the intensity values accurately. NURBS surfaces are generated through the interpolation of the cloud points. Performance of the developed system is to be confirmed through the realization of Mona Lisa and Golden Gate Bridge.

  • PDF

Track Initiation and Target Tracking Filter Using LiDAR for Ship Tracking in Marine Environment (해양환경에서 선박 추적을 위한 라이다를 이용한 궤적 초기화 및 표적 추적 필터)

  • Fang, Tae Hyun;Han, Jungwook;Son, Nam-Sun;Kim, Sun Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.2
    • /
    • pp.133-138
    • /
    • 2016
  • This paper describes the track initiation and target-tracking filter for ship tracking in a marine environment by using Light Detection And Ranging (LiDAR). LiDAR with three-dimensional scanning capability is more useful for target tracking in the short to medium range compared to RADAR. LiDAR has rotating multi-beams that return point clouds reflected from targets. Through preprocessing the cluster of the point cloud, the center point can be obtained from the cloud. Target tracking is carried out by using the center points of targets. The track of the target is initiated by investigating the normalized distance between the center points and connecting the points. The regular track obtained from the track initiation can be maintained by the target-tracking filter, which is commonly used in radar target tracking. The target-tracking filter is constructed to track a maneuvering target in a cluttered environment. The target-tracking algorithm including track initiation is experimentally evaluated in a sea-trial test with several boats.

A study on BSN data collection technique through mobile devices in a cloud environment

  • Hwang, Chigon;Kim, Hyung-Seok;Lee, Jong-Yong;Jung, Kyedong
    • International journal of advanced smart convergence
    • /
    • v.6 no.2
    • /
    • pp.82-88
    • /
    • 2017
  • The data generated by the BSN sensor attached to the human body is mostly mobile. Accordingly, in a mobile cloud environment that processes BSN data, the service should not be fixed in a specific area but be able to support it according to the move. The mobile device must be able to process, filter and transmit the collected BSN data. The cloud server must be able to collect the data processed by the mobile device and provide it as a service. And the transfer of data requires standardized transfer between each device. In this paper, we propose a data delivery method through standard schema when mobile device processes data and provides service in cloud system and a data processing method according to the movement of the mobile device.

An Attack-based Filtering Scheme for Slow Rate Denial-of-Service Attack Detection in Cloud Environment

  • Gutierrez, Janitza Nicole Punto;Lee, Kilhung
    • Journal of Multimedia Information System
    • /
    • v.7 no.2
    • /
    • pp.125-136
    • /
    • 2020
  • Nowadays, cloud computing is becoming more popular among companies. However, the characteristics of cloud computing such as a virtualized environment, constantly changing, possible to modify easily and multi-tenancy with a distributed nature, it is difficult to perform attack detection with traditional tools. This work proposes a solution which aims to collect traffic packets data by using Flume and filter them with Spark Streaming so it is possible to only consider suspicious data related to HTTP Slow Rate Denial-of-Service attacks and reduce the data that will be stored in Hadoop Distributed File System for analysis with the FP-Growth algorithm. With the proposed system, we also aim to address the difficulties in attack detection in cloud environment, facilitating the data collection, reducing detection time and enabling an almost real-time attack detection.