
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, Jun. 2019 2824
Copyright ⓒ 2019 KSII

AutoScale: Adaptive QoS-Aware
Container-based Cloud Applications

Scheduling Framework

Yao Sun1*, Lun Meng2 and Yunkui Song3

1 School of Software Engineering, Jinling Institute of Technology, Nanjing 211169, China
2 College of public administration, Hohai university, Nanjing 210098, China
3 Institute of Software, Chinese Academy of Sciences, Beijing 100190, China

*Corresponding author: Lun Meng (m_l_01@163.com)

Received July 6, 2018; revised August 29, 2018; accepted November 18, 2018;
published June 30, 2019

Abstract

Container technologies are widely used in infrastructures to deploy and manage applications
in cloud computing environment. As containers are light-weight software, the cluster of cloud
applications can easily scale up or down to provide Internet-based services. Container-based
applications can well deal with fluctuate workloads by dynamically adjusting physical
resources. Current works of scheduling applications often construct applications’ performance
models with collected historical training data, but these works with static models cannot
self-adjust physical resources to meet the dynamic requirements of cloud computing. Thus, we
propose a self-adaptive automatic container scheduling framework AutoScale for cloud
applications, which uses a feedback-based approach to adjust physical resources by extending,
contracting and migrating containers. First, a queue-based performance model for cloud
applications is proposed to correlate performance and workloads. Second, a fuzzy Kalman
filter is used to adjust the performance model’s parameters to accurately predict applications’
response time. Third, extension, contraction and migration strategies based on predicted
response time are designed to schedule containers at runtime. Furthermore, we have
implemented a framework AutoScale with container scheduling strategies. By comparing with
current approaches in an experiment environment deployed with typical applications, we
observe that AutoScale has advantages in predicting response time, and scheduling containers
to guarantee that response time keeps stable in fluctuant workloads.

Keywords: Kalman filter; Fuzzy logic; Cloud applications; Resource scheduling;
Performance management

This work was supported by the National Key R&D Program of China (grant 2018YFC0831300), Ministry of
Education of Humanities and Social Science Research (grant 17YJCZH156 and grant 15YJCZH117), the National
Social Science Foundation of China (grant 16CXW027), and Fundamental Research Fund for the Central
Universities (grant 2016B30314).

http://doi.org/10.3837/tiis.2019.06.003 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, June 2019 2825

1. Introduction

Nowadays, various applications are deployed on cloud computing to provide online services,
and thus guaranteeing these applications’ Quality of Service (QoS) is important. Isolated
independent software components are composed to build cloud applications. These
components often communicate with others using standard protocols, e.g., RPC, SOAP,
RESTFul. Scheduling cloud applications online in the granularity of a component is necessary,
because an application’s various components have different requirements of physical
resources. Containers (e.g., Docker) are widely adopted as cloud applications’ basic service
infrastructures. Stand-alone lightweight containers include required codes and resources in
executable software packages, which isolate applications from their deployment environment
and avoid the interferences of different applications on the same platform. So, applications
deployed in containers easily run on different platforms regardless of deployment environment.
Administrators can efficiently start or stop containers with low operating latency and
performance overhead, so it is easy to adjust containers’ resources to deal with fluctuate
workloads in cloud computing. Current approaches construct an application’s performance
model, estimate the resource requirements of the application, and then adjust the resources of
virtual machines or physical hosts. However, system administrators modeling an application’s
performance ought to be expert in the application. Furthermore, because the cloud computing
environment (e.g., workloads, deployment) is changing overtime, setting a performance
model’s parameters obtained from historical monitoring data is difficult.

To address above issues, we propose a self-adaptive automatic container scheduling
framework AutoScale for cloud applications, which uses a feedback-based approach to adjust
physical resources by extending, contracting and migrating containers. First, a queue-based
performance model for cloud applications is proposed to correlate performance and workloads.
Second, a fuzzy Kalman filter is used to adjust the performance model’s parameters to
accurately predict applications’ response time. Third, extension, contraction and migration
strategies based on predicted response time are designed to schedule containers at runtime.
Finally, we schedule resources by extending, contracting and migrating containers to achieve
required response time. We list our contributions as follows:
• Compared with current methods using domain knowledge, AutoScale adopts a Jackson

queueing network to model applications’ performance automatically. AutoScale
correlates performance and workloads, and then predict various applications’ response
time without human intervention.

• Compared with existing static performance models, AutoScale adopts a fuzzy Kalman
filter to predicts response time, which adaptively adjusts applications’ parameters to deal
with fluctuant workloads. Thus, AutoScale is suitable for dynamic cloud computing
environment.

• We have implemented a container scheduling framework AutoScale with our approach,
and validate it in predicting response time and scheduling containers by conducting
extensive experiments with typical applications.

We organize the rest of our paper as follows. The recent related works are analyzed and
reviewed in Section 2. The Jackson queueing network-based performance model is proposed
in Section 3. AutoScale to automatically extend, contract and migrate containers is designed in
Section 4. We conduct extensive experiments with typical applications to validate our
approach in Section 5, and conclude this paper in Section 6.

2826 Yao Sun et al.: AutoScale: Adaptive QoS-Aware Container-based Cloud Applications Scheduling Framework

2. Related Work
Current approaches construct applications’ performance models with admission control, fuzzy
logic and machine learning. Lama et al. correlate resources and performance, and then
estimate required resources in the constraints of QoS [8]. Cao et al. predict the maximum
number of concurrent workloads in the constraint of available resources, and then deny
extensive requests with admission control [9]. Cherkasova et al. construct a performance
model incorporating throughput and workloads, and then only accept suitable requests in the
condition of limited resources [10]. Robertsson et al. predict performance with a linear model
presenting the relationship between resources and performance, and then allocate required
resources to guarantee QoS [11]. Xu et al. target at virtualized environment by taking VM’s
performance overhead into the performance model, which adopt reinforcement learning to
manage a cloud’s resources [12]. Karlsson et al. model the resource requirements of an
application by isolating an application from surrounding environment, and then provide
resources for the application adaptively [13]. Lama et al. adopt machine learning technologies
to analyze interference among VMs, and then online provision physical resources for
applications [14]. Alizadeh et al. calculate a performance model’s parameters according to
collected historical monitoring data instances from networks, and then dynamically adjust
network resources [15]. Thant et al. optimize scientific workflows in IaaS to minimize VM
deployment span, cost and failure [16]. Some recent works also focus on scheduling
containers. Alsched using a queue-based model defines the utility function of allocating
resources to tasks, and then makes a scheduling decision based on the calculated utility [18].
Li et al. used a two-stage method to design an online scheduling mechanism and offline
reconfiguration mechanism [19]. Paragon uses a multi-queueing model-based method to
categorize heterogeneous resources and applications, analyzes their different resource
requirements, and then calculates their utilities automatically [20]. Existing works use
historical collected monitoring data to construct applications’ performance models and
calculate their parameters, so are not suitable for cloud computing, where models and
parameters are changing with dynamic workloads. Thus, we online model applications’
performance with a Jackson queueing, and then dynamically adopt a fuzzy Kalman filter to
optimize the model’s performance. Our performance model requiring no historical data
instances rapidly converges without human experience. Our approach efficiently schedules
physical resources for applications deployed in containers to achieve desired response time,
which can well deal with sudden workloads.

3. Resource Provision Approach
Response time is often adopted to measure the QoS of a cloud application. Since an
application utilizes allocated physical resources to process requests, the resources and
workloads of an application decide the response time. In this section, a Jackson queueing
network is adopted as a performance model to correlate response time with workloads. Then, a
Kalman filter is proposed to estimate the constructed performance model’s parameters.
Furthermore, to improve prediction accuracy, a fuzzy logic method is adopted to online adjust
the parameters of the performance model. Finally, to achieve desired response time, this
section proposes scheduling strategies based on predicted response time to extend, contract
and migrate containers at runtime.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, June 2019 2827

3.1 Application Performance Model
An application’s performance model correlating response time with workloads is used to
predict response time. The procedure that a cloud application processes requests can be
characterized as a Jackson queueing network as follows [1]:
• An open-loop Jackson queueing network represents a cloud application with correlated

application components;
• The independent nodes of a Jackson queueing network represent the application

components of a cloud application;
• The edges of a Jackson queueing network represent data transmission with a message bus

among application components;
• A node representing an application component processes a request event; the processed

event is sent to the next node representing an application component; the event leaving
the network represents a response sent back.

•

Fig. 1. Cloud applications’ queuing network model

The workflow of processing requests is described as follows: a cloud application accepts a

request from a customer; the cloud application capsules the arrival request as an event; many
components of the cloud application process the event sequentially; the cloud application
sends back a response event to the customer. A cloud application distributes requests to many
instances of an application component with a round robin strategy. Fig. 1 shows that a Jackson
queueing network models a component-based cloud application. In the figure, f represents the
workflow of processing a request sent from a customer; ji represents application component j’s
ith component instance; application components j1, j2, …, jn process a request sequentially,
where n is the number of application components; application component instance jk (1≤k≤m)
represents component j’s kth instance, where m is the number of component j’s instances.

According to the Jackson queueing network-based performance model, this paper predicts
an application’s response time in the condition of allocated physical resources. Application
component j’s resource preference (rpj) presents the required intensive physical resource (e.g.,
disk I/O, CPU). First, rpj’s resource utilization is calculated as:

∑i jijijj0j)Tγτu(u ××+= ，(0≤ 𝑢𝑗 ≤1) (1)
where rji is application component instance ji’s request number per second, and the
concurrency number varies in Poisson distribution; Tji is ji’s execution time; 𝜏𝑗 is a correlation
factor between resource utilization and request concurrency; u0j is rpj’s idle resource usage,
when an application component accepting no request is idle. The execution time of processing
a request flow f is calculated as:

𝜸𝟐𝟏

𝜸𝟐𝟐

𝜸𝟐𝟑

f 𝑩

𝒋𝟏 𝒋𝟐 𝒋𝟑 𝒋𝟒 𝒋𝟓

𝒊𝟏

𝒊𝟐

𝒊𝟑

𝑻𝟑𝟏

2828 Yao Sun et al.: AutoScale: Adaptive QoS-Aware Container-based Cloud Applications Scheduling Framework

1-

j
j

j

T
B d

u
= +∑ ， (2)

where Tj is component j’s execution time, and d is request flow f ’s transmission time.
An application’s u0j and rji are obtained by collecting monitoring data instances, and 𝜏𝑗 is

easily estimated with domain knowledge, but parameters Tji and d are difficult to be
calculated.

3.2 Response Time Prediction
Tji and d in formula (2) is necessary to predict response time, and thus this subsection introduce
the method of calculating them. A Kalman filter is a linear forecasting method to predict the
future value based on previous values, which recursively rectifies the prediction model by
comparing the current monitored value with predicted value based on the prediction model [2].
Since a Kalman filter efficiently online evolves the prediction model without significant
performance overhead, this paper adopts it to deal with fluctuant workloads in cloud
computing. Thus, Tji and d are predicted with a Kalman filter as follows:

1k k kX AX W+ = + , (3)
k k k kZ H X V= + , (4)

where Zk= (,)T
jT d j∀ is an observed matrix recording the monitored execution time of

components; Xk is a predicted matrix recording the predicted execution time of components;
Hk= 0(, , ,)T

j j jiu u B iγ ∀ records response time, resources usage and concurrent requests;
~ (0,)kW N W fitting for Gaussian distribution is a white noise excitation covariance matrix;
~ (0,)kV N V fitting for Gaussian distribution is a white noise measurement covariance matrix

[3]. This paper online adjusts Wk and Vk, which change with deployment as follows:
kW TW= , (5)

 kV UV= , (6)
where T and U are adjusting factors.

The Kalman filter model adjusts the predicted matrix as follows:
(1) Update X initialized with 𝑤𝑘−1 = 0：

 𝑋�𝑘− = 𝐴𝑋�𝑘−1 ; (7)
(2) Update covariance matrix 𝑃𝑘−：

 𝑃𝑘− = 𝐴𝑃𝑘−1𝐴𝑇 + 𝑊𝑘; (8)
(3) Calculate Kalman gain：

 𝐾𝑘 = 𝑃𝑘−𝐻𝑘𝑇�𝐻𝑘𝑃𝑘−𝐻𝑘𝑇 + 𝑉𝑘� −1; (9)
(4) Rectify X：

 𝑋�𝑘 = 𝑋�𝑘− + 𝐾𝑘�𝑧𝑘 − 𝐻𝑘𝑋�𝑘−�; (10)
(5) Rectify 𝑃𝑘：

 𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘−. (11)
The predicted value is iteratively rectified with a Kalman filter that only utilizes the current

predicted value and the current monitored value in each iteration regardless of historical data
instances.

javascript:;
javascript:;
javascript:;
javascript:;

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, June 2019 2829

3.3 Performance Model Adjustment
The above response time prediction based on Kalman filter has the following issues:
(1) The definition of a state transformation matrix has effect on the precision of predicting

response time. However, it is difficult to define a precise transformation matrix, because
an application component’s workloads vary in irregular nonlinearity;

(2) A typical Kalman filter sets each monitored data instance with the same weight, so cannot
train and update a precise model with increasing monitored values, which is not suitable
for dynamic workloads in cloud computing environment;

(3) Feedback-based methods are required to online adjust the excitation matrix and the noise
matrix of the typical Kalman filter to process irregular changing values.

To solve the above problems of the typical Kalman filter, this paper decreases the white
noise residual error to online adjust the Kalman filter’s parameters. Formula (3) and (4) adopt
fuzzy logic to rectify the Kalman filter by adjusting matrix W and V. The residual error means
the degree that the monitored value deviates from the predicted value:

r = () - ()Z k Z k , (12)
When the residual error’s variance exceeds the set threshold, the performance model is

online rectified. This paper calculates the following residual error variance:
() ()k k k k

T TP r A H P H W H V= + + , (13)
T and U in formula (5) and (6) are adjusted with a fuzzy logic function combining fuzzy

rules and a subordinating degree function. This paper adopts a Sugeno fuzzy logic model [17]
(i.e., TS) that are effective in nonlinearity to adjust the Kalman filter’s parameters. This paper
defines the following fuzzy logic rules Ri:

 𝑅𝑖 : 𝑖𝑓 𝑥1 𝑖𝑠 𝐴1𝑖 𝑎𝑛𝑑 𝑥2 𝑖𝑠 𝐴2𝑖 𝑡ℎ𝑒𝑛 𝑢𝑖 = 𝑝1𝑖 𝑥1 + 𝑝2𝑖 𝑥2 + 𝑟𝑖 1 ≤ 𝑖 ≤ 𝑛 (14)
where the ith fuzzy logic rule is Ri; the jth ’s input is xj; the ith rule’s output is ui; xj’s weight is pj

i;
ri is a constant; n is the number of fuzzy logic rules.

xj is an input of rule Ri, ui is the output of rule Ri, and then we calculate the overall result as:
𝑈 = ∑ 𝑢𝑖𝑤𝑖𝑚

𝑖 (15)
where wi is ui’s weight, m is the number of fuzzy logic rules.

We adopt formula (12) to calculate residual errors’ mean and variance, where n is the
number of data instances in a period.

avg = 1
𝑛
∑ 𝑟𝑖 (16)

cov = 1
𝑛
∑ 𝑟𝑖 𝑟𝑖𝑇 (17)

We calculate monitored residual errors’ variance with formula (17) and predict residual
errors’ variance with formula (13), and then compare them. When the monitored mean is much
bigger than zero, and the monitored variance is much bigger than the predicted variance, we
adjust the noise matrix to improve the Kalman filter’s precision. To construct a fuzzy logic
model, we input residual errors’ mean and variance, and then output noise matrixes W and V’s
parameters U and T. Table 1 shows the following defined fuzzy logic rules as follows:
(1) when the status is “Z”, U and T keep stable;
(2) when the status is “S”, U decreases and T increases;
(3) when the status is “L”, U increases and T decreases;
(4) when the status is “M”, both U and T increase.

Many optimal linearity equations are designed with the data instances obtained from a
series of experiments. Two examples are listed as follows:

𝑇 = 𝑃(𝑟) × 0.3 + 0.8，𝑈 = −𝑃(𝑟) × 0.2 + 1.9, (18)

2830 Yao Sun et al.: AutoScale: Adaptive QoS-Aware Container-based Cloud Applications Scheduling Framework

where residual errors’ mean is equal to “0” and residual errors’ variance is low.
𝑇 = −𝑃(𝑟) × 0.5 + 0.6，𝑈 = 𝑃(𝑟) × 0.1 + 1.4, (19)

where residual errors’ mean is low and residual errors’ variance is high.
To improve the Kalman filter’s precision, we adjust the Kalman filter’s parameters with

many set rules trained with collected data instances from extensive experiments. Furthermore,
various scenarios and applications can also adopt our approach with generated specific rules.

Table 1. Rules of fuzzy logic

 Residual Errors’ Mean
0 Low High

Residual Error’s Variance

0 S Z Z
Low S Z L
High L L M

4. AutoScale: Design and Implementation

4.1 Container Scheduling Strategy
A container scheduling strategy is proposed to guarantee cloud applications’ desired response
time in this subsection. The detailed container scheduling algorithm is described in Table 2.
We initiate a Jackson Network Queueing model (JNQ) to predict response time under specific
workloads (Line 1); initiate an Extended Kalman Filter (EKF) with parameters that are the
maximum resource utilization of a host, the minimum resource utilization of a host, and the
application’s maximum response time (Line 2); initialize an Fuzzy Logic Adaptive Controller
(FLAC) to adjust EKF model’s parameters (Line 3); define migration actions to migrate
containers, an expansion action function to expand containers, and a contraction action
function to contract containers (Line 4). Then, we online adjust the performance model and
predict response time in period (Line 5) as follows: adjusting the parameters of EKF with
FLAC (Line 6); adjusting the parameters of the JNQ with EKF (Line 7); using the JNQ to
predict response time (Line 8). The scheduling strategies of migration, expansion and
contraction are described as follows:
• Migration (Line 9): the scheduler stores a source container with the state of an application

as an image, shuts down the source container and releases its resources, allocates
resources for a container in a target physical machine with sufficient resources and starts
the container image, when a container’s resource usage is less than the pre-defined upper
threshold.

• Expansion (Line 10): the scheduler allocates physical resources for a container, and then
starts it in a chosen target physical machine, when a container’s resource usage is more
than the pre-defined upper threshold.

• Contraction (Line 11): the scheduler stops and releases some instances to reduce the
number of instances, when an application’s many instances’ resource utilization is much
lower than the predefined expected value.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, June 2019 2831

Table 2. Container Scheduling Algorithm
Container Scheduling Algorithm
Input: Maximum resource utilization (MaxR), Minimum resource utilization (MinR),
Response time threshold (RT)
Output: Actions of migrating, expanding and contracting containers
1. Initiate Jackson network queueing model: JNQ ()
2. Initiate an extended Kalman filter: EKF(X(0), Z(0));
3. Initiate a fuzzy logic adaptive controller: FLAC(P(r));
4. Define scheduling function Migrate (), Expand (), Contract ();
5. While (a period)

{
6. Update the parameters of EKF with FLAC in formula (18) and (19): (U, T) =

FLAC(P(r));
7. Update the parameters of JNQ with EKF in formula (3) and (4): EKF(X(i), Z(i));
8. Predict response time with JNQ in formula (1) and (2): B = JNQ ();
9. If iu∑ > MaxR && B < RT:
 Then Migrate ();
10. If B > RT:
 Then Expand ();
11. If ui < MinR:
 Then Contract ().

}

4.2. Framework Implementation
As shown in Fig. 2, the workflow of our approach is described as follows: a user chooses or
customizes a container deployment template; the application deployer verifies the template
and sets a configuration for the container and application; the collector monitors each
container with an agent deployed in each slave; the scheduler makes a scheduling plan based
on collected monitoring data; the executor deploys container instances with applications in
suitable slaves. The application deployer analyzes the correlations between components with
automatic deployment tools (e.g., Puppet); records the analyzed results in a configuration file
that decides the components’ dependencies and boot sequence; initializes a Jackson network
queueing to model applications. The container scheduler deploys agents in container instances
to collect the monitoring data of slave and containers, e.g., response time, resource utilization.
According to monitored data instances, the scheduler adjusts the Jackson network queueing
model with a Kalman filter and a fuzzy logic controller. The scheduler guarantees the
performance (i.e., response time) of cloud applications by migrating, extending or contracting
containers. Containers without allocating and restricting resources in advance can dynamically
apply and release resources on demand at runtime. Thus, containers can improve the resource
utilization of their located host. However, they perhaps have the serious problem of resource
competition. For example, when the memory utilization of many containers in a host suddenly
increase simultaneously, the failure of “Out of Memory Kill” happens, and then some
containers are forcibly ceased. So, we restrict the resource utilization of every container to
grantee the lower limits of a container’s resources.

javascript:;

2832 Yao Sun et al.: AutoScale: Adaptive QoS-Aware Container-based Cloud Applications Scheduling Framework

… …

Slave

VMn
VM1

VM1

...

Agent

App

Container 1
Container 2

Container n

…

Slave

VMn
VM1

VM1

...

Agent

App

Container 1
Container 2

Container n

Collector

Master

Scheduler

Excecutor

Application
Deployer

Fig. 2. Container Scheduling Framework

5. Experiment

5.1 Deployment Environment
Fig. 3 shows our experimental environment deployed with the cluster of eight hosts; a gigabit
ethernet network connects these hosts to construct a cluster; each cloud application is
deployed in a container with CenOS 7 and Docker 1.7; each host with Intel Core i7 CPU
3.4GHz and an 8G memory deploys many applications in dockers. The deployment
environment includes JMeter deployed on a workload generator node, Nginx deployed on a
load balancer node, a Master node to manage four Slaver nodes, and MySQL deployed on a
database node. The cloud application Web Serving of a cloud-based application benchmark
suite Cloudsuite1 is deployed on four slaver nodes.

Database

Slave 1

Slave 3
Load Balancer

Slave 2

Slave 4
Master

Generator

Fig. 3. Deployment environment

1 http://cloudsuite.ch//pages/benchmarks/webserving/

http://cloudsuite.ch/pages/benchmarks/webserving/

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, June 2019 2833

5.2 Predicting Response Time

5.2.1 Simulating Workloads with Trends
This subsection simulates workloads with increasing concurrency, and then monitors response
time in period. The response time corresponding to concurrent requests is predicted. Our
approach is compared with existing typical methods in predicting response time to validate the
effect. The compared existing methods are introduced and validated as follows.

Fig. 4. Comparison in workloads with trends

(1) RL: Reinforcement Learning

A reinforcement learning method is adopted to construct a performance model and adjust
the parameters of the model [4]. Fig. 4 shows the results of experiments in fluctuate workloads,
where the performance model slowly converges during from the 150th second to the 200th
second and from the 230th second to the 270th second. Furthermore, the reinforcement learning
method requires a training dataset with a large scale of data instances, so the method cannot be
applied in fluctuant workloads.
(2) FL: Fuzzy Logic

A neural fuzzy controller self-constructs its performance model’s structure, and online
adjusts the parameters with online learning, which is designed to predict response time [5].
Since the parameters of a fuzzy controller have significant effect on a performance model’s
accuracy and these parameters vary with workloads, it is difficult to set suitable parameters
and online adjust these parameters, which requires domain knowledge and continuous analysis.
Fig. 4 shows that the monitored response time significantly deviates the predicted response
time during from the 50th second to the 100th second and from the 150th to the 300th second. It is
because that this method does not online adjust parameters to adapt to changing workloads.
(3) FC: Feedback Control

A feedback-based control technology is adopted to design feedback-based loops [6]. This
method can improve running applications’ stability, and train operating rules with low
computation complexity. Fig. 4 shows that the method cannot accurately predict response time
at beginning, because a long initialization period is required to construct a feedback controller.
(4) AutoScale: Our Approach

Fig. 4 shows that the error rate of our approach is less than 5%, and the errors of our
approach always occur at beginning, because our approach ought to train the performance
model in the initialization period. Note that our approach achieves less than 0.5% error rate
during from the 200th second to the 250th second, when the simulated workloads significantly

2834 Yao Sun et al.: AutoScale: Adaptive QoS-Aware Container-based Cloud Applications Scheduling Framework

increase. Thus, from the experimental results, we can see that our approach predicts response
time with a high accuracy in fluctuant workloads.

5.2.2 Simulating Workloads with Periodicity
Periodic workloads are simulated in a time-of-day pattern, and then we compare our approach
with RAMA [7] applied for periodic workloads in predicting response time. Fig. 5 and Fig. 6
show that the error rate of our approach is lower than that of RAMA at beginning, and then the
error rate of our approach decreases after initialization. The error rate of RAMA is about above
10%, but that of our approach is about 5%. The error rate of our approach is much lower than
that of RAMA in fluctuant workloads, because RAMA is not suitable for dynamic workloads.
Thus, the accuracy of our approach in predicting response time is much better than that of
RAMA in periodic workloads. To reduce so many errors at beginning, our approach decreases
the sampling frequency to increase the size of the training dataset during initialization.

Fig. 5. Comparison in workloads with periodicity

Fig. 6. Comparison of error rates

5.3 Scheduling Effect
JMeter simulates cyclical workloads, stable workloads, rising workloads and decreasing
workloads sequentially. We compare our approach with a typical admission control-based
scheduling method [10] in the effect of scheduling resources. The admission controller cannot

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, June 2019 2835

adapt to fluctuant workloads, because it takes a long period to analyze suitable parameters. Six
services are deployed on node Slave 1 and six services are deployed on node Slave 2 in the
initialization period. Fig. 7 shows the experimental results, which are analyzed as follows:
(1) Stable workloads (0-200th sec.): when 30 concurrent requests per second are simulated, the
Kalman filter is initialized;
(2) Dynamic workloads (200-300th sec.): when 30-60 concurrent requests per second are
simulated, the response time keeps in a narrow scope as three services on Slave 1 are migrated
to Slave 3 and Slave 4.
(3) Stable workloads (300-400th sec.): when 50 concurrent requests per second are simulated,
the response time keeps stable.
(4) Rising workloads (400-700th sec.): when 50-100 concurrent requests per second are
simulated, the response time decreases as services on Slave 1 and Slave 2 are expanded to
other nodes.
(5) Decreasing workloads (700-800th sec.): when 100-30 concurrent requests per second are
simulated, some services are contracted to fewer nodes.

The response time of our approach keeps stable in about 35 micro seconds, so our
approach is much better than admission control-based scheduling method in dealing with
fluctuant workloads.

Fig. 7. Comparison of scheduling effect

6. Conclusion
Containers are widely adopted as infrastructures to support cloud applications providing
Internet-based services. We propose a container-based scheduling approach to guarantee
cloud applications’ performance in cloud computing environment with dynamic workloads. A
performance model based on a Jackson queueing network is proposed to correlate
performance and workloads. A fuzzy Kalman filter is adopted to adjust the performance
model’s parameters to accurately predict applications’ response time. According to the
constructed model and calculated parameters, we extend, contract and migrate containers to
achieve desired response time at runtime. Furthermore, this paper has implemented AutoScale
with scheduling strategies, deployed typical applications and validated it by simulating
fluctuant workloads. By comparing with current works, AutoScale achieves much more

2836 Yao Sun et al.: AutoScale: Adaptive QoS-Aware Container-based Cloud Applications Scheduling Framework

accurate results in predicting performance, and is effective in scheduling containers to
guarantee that the response time keeps stable under fluctuant workloads.

References

[1] Shanthikumar J G, Buzacott J A., “Open queueing network models of dynamic job shops,”
International Journal of Production Research, 19(3): 255-266, 1981. Article (CrossRef Link)

[2] Kalman R E., “A New Approach to Linear Filtering and Prediction Problems,” Transaction of the
ASME-Journal of Basic Engineering, 82:35 -45, 1960. Article (CrossRef Link)

[3] Sinopoli B, Schenato L, Franceschetti M, et al., “Kalman filtering with intermittent observations,”
IEEE Transactions on Automatic Control, 49(9): 1453-1464, 2004. Article(CrossRef Link)

[4] Martinez J F, Ipek E., “Dynamic multicore resource management: A machine learning approach,”
IEEE Micro, 29(5): 8-17, 2009. Article (CrossRef Link)

[5] Lama P, Zhou X., “Autonomic provisioning with self-adaptive neural fuzzy control for end-to-end
delay guarantee,” IEEE International Symposium on Modeling, Analysis & Simulation of
Computer and Telecommunication Systems (MASCOTS), 151-160, 2010. Article (CrossRef Link)

[6] Chengyang Lu, Lu Y, Abdelzaher T F, et al., “Feedback control architecture and design
methodology for service delay guarantees in web servers,” IEEE Transactions on Parallel and
Distributed Systems, 17(9): 1014-1027, 2006. Article (CrossRef Link)

[7] Lama P, Guo Y, Zhou X., “Autonomic performance and power control for co-located Web
applications on virtualized servers,” IEEE/ACM 21st International Symposium on Quality of
Service (IWQoS), 1-10, 2013. Article (CrossRef Link)

[8] Lama P, Zhou X., “Efficient server provisioning with control for end-to-end response time
guarantee on multitier clusters,” IEEE Transactions on Parallel and Distributed Systems, 23(1):
78-86, 2012. Article (CrossRef Link)

[9] Cao J, Zhang W, Tan W., “Dynamic control of data streaming and processing in a virtualized
environment,” IEEE Transactions on Automation Science and Engineering, 9(2): 365-376, 2012.
Article (CrossRef Link)

[10] Cherkasova L, Phaal P., “Session-based admission control: A mechanism for peak load
management of commercial web sites,” IEEE Transactions on Computers, 51(6): 669-685, 2002.
Article (CrossRef Link)

[11] Robertsson A, Wittenmark B, Kihl M, et al., “Design and evaluation of load control in web server
systems,” in Proc. of IEEE American Control Conference, 3: 1980-1985, 2004.
Article (CrossRef Link)

[12] Xu C Z, Rao J, Bu X., “URL: A unified reinforcement learning approach for autonomic cloud
management,” Journal of Parallel and Distributed Computing, 72(2): 95-105, 2012.
Article (CrossRef Link)

[13] Karlsson M, Karamanolis C, Zhu X., “Triage: Performance isolation and differentiation for
storage systems,” IEEE International Workshop on Quality of Service, IWQOS 2004: 67-74, 2004.
Article (CrossRef Link)

[14] Lama P, Zhou X., “Autonomic provisioning with self-adaptive neural fuzzy control for
percentile-based delay guarantee,” ACM Transactions on Autonomous and Adaptive Systems, 8(2):
9, 2013. Article (CrossRef Link)

[15] Alizadeh M., “Fast and Smart Network Resource Management for Datacenters and Beyond,” in
Proc. of the 13th International Conference on emerging Networking EXperiments and
Technologies, 12-21, 2017. Article (CrossRef Link)

http://dx.doi.org/10.1080/00207548108956652
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1109/TAC.2004.834121
http://dx.doi.org/10.1109/MM.2009.77
http://dx.doi.org/10.1109/MASCOTS.2010.24
http://dx.doi.org/10.1109/TPDS.2006.123
http://dx.doi.org/10.1109/IWQoS.2013.6550266
http://dx.doi.org/10.1109/TPDS.2011.88
http://dx.doi.org/10.1109/TASE.2011.2182049
http://dx.doi.org/10.1109/TC.2002.1009151
http://dx.doi.org/10.23919/ACC.2004.1383750
http://dx.doi.org/10.1016/j.jpdc.2011.10.003
http://dx.doi.org/10.1109/IWQOS.2004.1309358
http://dx.doi.org/10.1145/2491465.2491468
https://dl.acm.org/author_page.cfm?id=81467661268
https://dl.acm.org/citation.cfm?id=3157913
http://dx.doi.org/10.1145/3143361.3157913

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, June 2019 2837

[16] Takagi T, Sugeno M., “Fuzzy identification of systems and its applications to modeling and
control,” IEEE Transactions on Systems, Man and Cybernetics, (1): 116-132, 1985.
Article (CrossRef Link)

[17] Adriyendi, “Fuzzy Logic using Tsukamoto Model and Sugeno Model on Prediction Cost,”
International Journal of Intelligent Systems & Applications, 6(2), 2018.
Article (CrossRef Link)

[18] Tumano VA, Cipar J, Kozuch MA, Ganger GR., “Alsched: Algebraic scheduling of mixed
workloads in heterogeneous clouds,” in Proc. of the 3rd ACM Symp. on Cloud Computing, ACM
Press, 2012. Article (CrossRef Link)

[19] Li Z, Zhang Y, Zhao Y, Peng Y, Li D., “Best Effort Task Scheduling for Data Parallel Jobs,” in
Proc. of ACM SIGCOMM Conference, ACM Press, 555-556, 2016. Article (CrossRef Link)

[20] Delimitrou C, Kozyrakis C., “Paragon: QoS-Aware scheduling for heterogeneous datacenters,”
ACM Transactions on Computer Systems, 31(4): 77-88, 2013. Article (CrossRef Link)

Yao Sun is a lecturer in the Jinling Institute of Technology in China. He received the PhD
degree in Computer Software and Theory from the Institute of Software, Chinese Academy
of Sciences in 2016, and MS degree in Computer Architecture from Northeast Normal
University of China in 2009. His research interests include data engineering, distributed
systems, and intelligent systems.

Lun Meng is a lecturer in the Hohai University in China. He received the PhD degree in
Tsinghua University in 2013, and MS degree in Computer Architecture in Northeast Normal
University of China in 2009. His research interests include public opinion analysis, news
communication, and autonomic computing for cloud computing systems.

Yunkui Song is an assistant professor in the Institute of Software, Chinese Academy of
Sciences in China. He received the MS degree in Computer Software and Theory from the
Institute of Software Chinese, Academy of Sciences in 2009. His research interests include
application performance management, software reliability, and autonomic computing for
cloud computing systems.

http://dx.doi.org/10.1109/TSMC.1985.6313399
http://dx.doi.org/10.5815/ijisa.2018.06.02
http://dx.doi.org/10.1145/2391229.2391254
https://dl.acm.org/author_page.cfm?id=99658955477
https://dl.acm.org/author_page.cfm?id=99658953427
https://dl.acm.org/author_page.cfm?id=99659057899
https://dl.acm.org/author_page.cfm?id=87959267057
https://dl.acm.org/author_page.cfm?id=99658956613
http://dx.doi.org/10.1145/2934872.2959047
http://dx.doi.org/10.1145/2556583

