• Title/Summary/Keyword: Cloud Computing Services

Search Result 644, Processing Time 0.034 seconds

A Framework of Intelligent Middleware for DNA Sequence Analysis in Cloud Computing Environment (DNA 서열 분석을 위한 클라우드 컴퓨팅 기반 지능형 미들웨어 설계)

  • Oh, Junseok;Lee, Yoonjae;Lee, Bong Gyou
    • Journal of Internet Computing and Services
    • /
    • v.15 no.1
    • /
    • pp.29-43
    • /
    • 2014
  • The development of NGS technologies, such as scientific workflows, has reduced the time required for decoding DNA sequences. Although the automated technologies change the genome sequence analysis environment, limited computing resources still pose problems for the analysis. Most scientific workflow systems are pre-built platforms and are highly complex because a lot of the functions are implemented into one system platform. It is also difficult to apply components of pre-built systems to a new system in the cloud environment. Cloud computing technologies can be applied to the systems to reduce analysis time and enable simultaneous analysis of massive DNA sequence data. Web service techniques are also introduced for improving the interoperability between DNA sequence analysis systems. The workflow-based middleware, which supports Web services, DBMS, and cloud computing, is proposed in this paper for expecting to reduceanalysis time and aiding lightweight virtual instances. It uses DBMS for managing the pipeline status and supporting the creation of lightweight virtual instances in the cloud environment. Also, the RESTful Web services with simple URI and XML contents are applied for improving the interoperability. The performance test of the system needs to be conducted by comparing results other developed DNA analysis services at the stabilization stage.

PRIAM: Privacy Preserving Identity and Access Management Scheme in Cloud

  • Xiong, Jinbo;Yao, Zhiqiang;Ma, Jianfeng;Liu, Ximeng;Li, Qi;Ma, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.282-304
    • /
    • 2014
  • Each cloud service has numerous owners and tenants, so it is necessary to construct a privacy preserving identity management and access control mechanism for cloud computing. On one hand, cloud service providers (CSP) depend on tenant's identity information to enforce appropriate access control so that cloud resources are only accessed by the authorized tenants who are willing to pay. On the other hand, tenants wish to protect their personalized service access patterns, identity privacy information and accessing newfangled cloud services by on-demand ways within the scope of their permissions. There are many identity authentication and access control schemes to address these challenges to some degree, however, there are still some limitations. In this paper, we propose a new comprehensive approach, called Privacy pReserving Identity and Access Management scheme, referred to as PRIAM, which is able to satisfy all the desirable security requirements in cloud computing. The main contributions of the proposed PRIAM scheme are threefold. First, it leverages blind signature and hash chain to protect tenant's identity privacy and implement secure mutual authentication. Second, it employs the service-level agreements to provide flexible and on-demand access control for both tenants and cloud services. Third, it makes use of the BAN logic to formally verify the correctness of the proposed protocols. As a result, our proposed PRIAM scheme is suitable to cloud computing thanks to its simplicity, correctness, low overhead, and efficiency.

A Fully Distributed Secure Approach using Nondeterministic Encryption for Database Security in Cloud

  • Srinu Banothu;A. Govardhan;Karnam Madhavi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.140-150
    • /
    • 2024
  • Database-as-a-Service is one of the prime services provided by Cloud Computing. It provides data storage and management services to individuals, enterprises and organizations on pay and uses basis. In which any enterprise or organization can outsource its databases to the Cloud Service Provider (CSP) and query the data whenever and wherever required through any devices connected to the internet. The advantage of this service is that enterprises or organizations can reduce the cost of establishing and maintaining infrastructure locally. However, there exist some database security, privacychallenges and query performance issues to access data, to overcome these issues, in our recent research, developed a database security model using a deterministic encryption scheme, which improved query execution performance and database security level.As this model is implemented using a deterministic encryption scheme, it may suffer from chosen plain text attack, to overcome this issue. In this paper, we proposed a new model for cloud database security using nondeterministic encryption, order preserving encryption, homomorphic encryptionand database distribution schemes, andour proposed model supports execution of queries with equality check, range condition and aggregate operations on encrypted cloud database without decryption. This model is more secure with optimal query execution performance.

Digital Forensic Methodology of IaaS Cloud Computing Service (IaaS 유형의 클라우드 컴퓨팅 서비스에 대한 디지털 포렌식 연구)

  • Jeong, Il-Hoon;Oh, Jung-Hoon;Park, Jung-Heum;Lee, Sang-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.6
    • /
    • pp.55-65
    • /
    • 2011
  • Recently, use of cloud computing service is dramatically increasing due to wired and wireless communications network diffusion in a field of high performance Internet technique. Cloud computing is a model for enabling convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. In a view of digital forensic investigation, it is difficult to obtain data from cloud computing service environments. therefore, this paper suggests analysis method of AWS(Amazon Web Service) and Rackspace which take most part in cloud computing service where IaaS formats presented for data acquisition in order to get an evidence.

Goal-driven Optimization Strategy for Energy and Performance-Aware Data Centers for Cloud-Based Wind Farm CMS

  • Elijorde, Frank;Kim, Sungho;Lee, Jaewan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1362-1376
    • /
    • 2016
  • A cloud computing system can be characterized by the provision of resources in the form of services to third parties on a leased, usage-based basis, as well as the private infrastructures maintained and utilized by individual organizations. To attain the desired reliability and energy efficiency in a cloud data center, trade-offs need to be carried out between system performance and power consumption. Resolving these conflicting goals is often the major challenge encountered in the design of optimization strategies for cloud data centers. The work presented in this paper is directed towards the development of an Energy-efficient and Performance-aware Cloud System equipped with strategies for dynamic switching of optimization approach. Moreover, a platform is also provided for the deployment of a Wind Farm CMS (Condition Monitoring System) which allows ubiquitous access. Due to the geographically-dispersed nature of wind farms, the CMS can take advantage of the cloud's highly scalable architecture in order to keep a reliable and efficient operation capable of handling multiple simultaneous users and huge amount of monitoring data. Using the proposed cloud architecture, a Wind Farm CMS is deployed in a virtual platform to monitor and evaluate the aging conditions of the turbine's major components in concurrent, yet isolated working environments.

A Secure and Efficient Cloud Resource Allocation Scheme with Trust Evaluation Mechanism Based on Combinatorial Double Auction

  • Xia, Yunhao;Hong, Hanshu;Lin, Guofeng;Sun, Zhixin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4197-4219
    • /
    • 2017
  • Cloud computing is a new service to provide dynamic, scalable virtual resource services via the Internet. Cloud market is available to multiple cloud computing resource providers and users communicate with each other and participate in market transactions. However, since cloud computing is facing with more and more security issues, how to complete the allocation process effectively and securely become a problem urgently to be solved. In this paper, we firstly analyze the cloud resource allocation problem and propose a mathematic model based on combinatorial double auction. Secondly, we introduce a trust evaluation mechanism into our model and combine genetic algorithm with simulated annealing algorithm to increase the efficiency and security of cloud service. Finally, by doing the overall simulation, we prove that our model is highly effective in the allocation of cloud resources.

Design Patterns for Building Context-Aware Transactional Services in PaaS-Enabled Systems

  • Ettazi Widad;Riane Driss;Nassar Mahmoud
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.91-100
    • /
    • 2023
  • Pervasive computing is characterized by a key characteristic that affects the operating environment of services and users. It places more emphasis on dynamic environments where available resources continuously vary without prior knowledge of their availability, while in static environments the services provided to users are determined in advance. At the same time, Cloud computing paradigm introduced flexibility of use according to the user's profile and needs. In this paper, we aimed to provide Context-Aware Transactional Service applications with solutions so that it can be integrated and invoked like any service in the digital ecosystem. Being able to compose is not enough, each service and application must be able to offer a well-defined behavior. This behavior must be controlled to meet the dynamicity and adaptability necessary for the new user's requirements. The motivation in this paper is to offer design patterns that will provide a maximum of automatism in order to guarantee short reaction times and minimal human intervention. Our proposal includes a cloud service model by developing a PaaS service that allows CATS adaptation. A new specification for the validation of CATS model has been also introduced using the ACTA formalism.

A Study on Influencing Factors on User's Adoption Resistance to Personal Cloud Computing Service (개인용 클라우드 컴퓨팅 서비스 수용저항에 영향을 미치는 요인에 관한 연구)

  • Jo, In-Jea;Kim, Sun-Kyu;Yang, Sung-Byung
    • Knowledge Management Research
    • /
    • v.16 no.1
    • /
    • pp.117-142
    • /
    • 2015
  • Recently, the personal cloud computing service has been being spotlighted as an individual tool of productivity enhancement. However, compared to the rosy forecast, its diffusion rate in the domestic (Korean) market is much slower than expected. In order to find the reason for the slow growth of personal cloud computing service, we attempt to identify influencing factors on user's adoption resistance, while most prior research has focused on the factors affecting its adoption. Based on both the person-technology fit model and the privacy calculus model, we propose technostress and perceived value as key antecedents of adoption resistance. In addition, we identify (1) technical (pace of change and complexity) and personal (self-efficacy) influencing factors on technostress, and (2) beneficial (perceived mobility and perceived availability) and harmful (perceived vulnerability) influencing factors on perceived value. To validate our research model, 133 individual samples were gathered from undergraduate and graduate students who had actual experience of using at least one of personal cloud computing services. The results of the structural equation modeling confirm that both technostress and perceived value have significant effects on adoption resistance, but they have different influencing mechanisms to different types of adoption resistance (indifference, postponement, and rejection). Theoretical and practical contributions are discussed in the conclusion.

Cloud Computing Virtualization: It's Security Issues and Vulnerability (클라우드 컴퓨팅 가상화 기술: 보안이슈 및 취약점)

  • Kang, Dea-Hoon;Kim, Sang-Gu;Kim, HyunHo;Lee, HoonJae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.234-237
    • /
    • 2014
  • The increasing of Cloud Computing technology among several companies has been a key strategy for IT services to provide desirable IT solutions to consumers of cloud services. More attention is concentrated to these core technologies that enable cloud services and more particularly to the virtualization aspect. The accessibility to a larger number of users is possible because of the usage of the data-intensive, data management and data integrity. Unfortunately, those useful services are vulnerable to kind of attacks by hackers, thus the security of personal information is in critical situation. To solve this to leakage vulnerability, and with the proliferation of cloud services, the cloud service providers adopt a security system with firewall, antivirus software and a large number of virtualized servers and Host. In this paper, a variety of virtualization technologies, threats and vulnerabilities are described with a complement of different security solutions as countermeasures.

  • PDF

Pratical Offloading Methods and Cost Models for Mobile Cloud Computing (모바일 클라우드 컴퓨팅을 위한 실용적인 오프로딩 기법 및 비용 모델)

  • Park, Min Gyun;Zhe, Piao Zhen;La, Hyun Jung;Kim, Soo Dong
    • Journal of Internet Computing and Services
    • /
    • v.14 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • As a way of augmenting constrained resources of mobile devices such as CPU and memory, many works on mobile cloud computing (MCC), where mobile devices utilize remote resources of cloud services or PCs, /have been proposed. A typical approach to resolving resource problems of mobile nodes in MCC is to offload functional components to other resource-rich nodes. However, most of the current woks do not consider a characteristic of dynamically changed MCC environment and propose offloading mechanisms in a conceptual level. In this paper, in order to ensure performance of highly complex mobile applications, we propose four different types of offloading mechanisms which can be applied to diverse situations of MCC. And, the proposed offloading mechanisms are practically designed so that they can be implemented with current technologies. Moreover, we define cost models to derive the most sutilable situation of applying each offloading mechanism and prove the performance enhancement through offloadings in a quantitative manner.