• Title/Summary/Keyword: Cloud Architecture

Search Result 370, Processing Time 0.021 seconds

Supplements an Initial Creation and User Addition in VANET Cloud Architecture (초기 생성과 사용자 추가를 고려한 VANET 클라우드 아키텍처)

  • Kim, Taehyeong;Song, JooSeok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.12
    • /
    • pp.449-454
    • /
    • 2014
  • While the era of driverless car has come, Vehicular Ad hoc NETwork(VANET) is getting important. Original VANET has a limit that cannot use computation power, storage space of On Board Unit(OBU) installed in a vehicle efficiently. VANET cloud computing(VCC) solves the limit to focus on using abilities of each vehicle. This article proposes VCC architecture for supplementing user addition and initial cloud creation that have been researched insufficiently.

Analysis of Influence Factors on the Intention to Use Personal Cloud Computing (개인용 클라우드 컴퓨팅 사용에 미치는 영향요인 분석)

  • Ryu, Jae Hong;Moon, Hye Young;Choi, Jinho
    • Journal of Information Technology Services
    • /
    • v.12 no.4
    • /
    • pp.319-335
    • /
    • 2013
  • Cloud computing allows users to access software or specific programs that support the cloud platform through an information communicating device that can connect to the internet anywhere or anytime. Also, the cloud architecture not only reduces the expenses of IT infrastructure construction and maintenance, but also speeds up processing and mobility, which leads to a significant ease of use. In spite of the advantages of cloud computing, previous studies have been centered on case studies of the execution, advantages, and problems of cloud computing. In contrast, empirical research on individual cloud computing up till now is very insufficient. Thus, the research aims to create a model of an individual user's perspective and verify validation. This study reveals types of influence that characteristics can have on an individual user's intention to use, by searching the characteristics that the individual user recognizes on cloud computing services. The results are as follows:first, the characteristics of cloud computing indicates a significant influence on usage intention. Second, all characteristics in cloud computing, accessibility, reliability, perceived ease of use, and fusibility, are confirmed in providing significant influences in shaping social influence forms. Third, social influence has a significant influence on usage intention.

MyData Cloud: Secure Cloud Architecture for Strengthened Control Over Personal Data (MyData Cloud: 개인 정보 통제 강화를 위한 안전한 클라우드 아키텍쳐 설계)

  • Seungmin Heo;Yonghee Kwon;Beomjoong Kim;Kiseok Jeon;Junghee Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.4
    • /
    • pp.597-613
    • /
    • 2024
  • MyData is an approach of personal data management, which grants data subjects the right to decide how to use and where to provide their data. With the explicit consent of the subjects, service providers can collect scattered data from data sources and offer personalized services based on the collected data. In existing service models, personal data saved in data storage can be shared with data processors of service providers or third parties. However, once personal data are transferred to third-party processors, it is difficult for data subjects to trace and control their personal data. Therefore, in this paper, we propose a cloud model where both data storage and processor are located within a single cloud, ensuring that data do not leave the cloud.

RAS: Request Assignment Simulator for Cloud-Based Applications

  • Rajan, R. Arokia Paul;Francis, F. Sagayaraj
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2035-2049
    • /
    • 2015
  • Applications deployed in cloud receive a huge volume of requests from geographically distributed users whose satisfaction with the cloud service is directly proportional to the efficiency with which the requests are handled. Assignment of user requests based on appropriate load balancing principles significantly improves the performance of such cloud-based applications. To study the behavior of such systems, there is a need for simulation tools that will help the designer to set a test bed and evaluate the performance of the system by experimenting with different load balancing principles. In this paper, a novel architecture for cloud called Request Assignment Simulator (RAS) is proposed. It is a customizable, visual tool that simulates the request assignment process based on load balancing principles with a set of parameters that impact resource utilization. This simulator will help to ascertain the best possible resource allocation technique by facilitating the designer to apply and test different load balancing principles for a given scenario.

Design and Evaluation of a Hierarchical Hybrid Content Delivery Scheme using Bloom Filter in Vehicular Cloud Environments (차량 클라우드 환경에서 블룸 필터를 이용한 계층적 하이브리드 콘텐츠 전송 방법의 설계 및 평가)

  • Bae, Ihn-Han
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1597-1608
    • /
    • 2016
  • Recently, a number of solutions were proposed to address the challenges and issues of vehicular networks. Vehicular Cloud Computing (VCC) is one of the solutions. The vehicular cloud computing is a new hybrid technology that has a remarkable impact on traffic management and road safety by instantly using vehicular resources. In this paper, we study an important vehicular cloud service, content-based delivery, that allows future vehicular cloud applications to store, share and search data totally within the cloud. We design a VCC-based system architecture for efficient sharing of vehicular contents, and propose a Hierarchical Hybrid Content Delivery scheme using Bloom Filter (H2CDBF) for efficient vehicular content delivery in Vehicular Ad-hoc Networks (VANETs). The performance of the proposed H2CDBF is evaluated through an analytical model, and is compared to the proactive content discovery scheme, Bloom-Filter Routing (BFR).

Semantic Segmentation of Clouds Using Multi-Branch Neural Architecture Search (멀티 브랜치 네트워크 구조 탐색을 사용한 구름 영역 분할)

  • Chi Yoon Jeong;Kyeong Deok Moon;Mooseop Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.143-156
    • /
    • 2023
  • To precisely and reliably analyze the contents of the satellite imagery, recognizing the clouds which are the obstacle to gathering the useful information is essential. In recent times, deep learning yielded satisfactory results in various tasks, so many studies using deep neural networks have been conducted to improve the performance of cloud detection. However, existing methods for cloud detection have the limitation on increasing the performance due to the adopting the network models for semantic image segmentation without modification. To tackle this problem, we introduced the multi-branch neural architecture search to find optimal network structure for cloud detection. Additionally, the proposed method adopts the soft intersection over union (IoU) as loss function to mitigate the disagreement between the loss function and the evaluation metric and uses the various data augmentation methods. The experiments are conducted using the cloud detection dataset acquired by Arirang-3/3A satellite imagery. The experimental results showed that the proposed network which are searched network architecture using cloud dataset is 4% higher than the existing network model which are searched network structure using urban street scenes with regard to the IoU. Also, the experimental results showed that the soft IoU exhibits the best performance on cloud detection among the various loss functions. When comparing the proposed method with the state-of-the-art (SOTA) models in the field of semantic segmentation, the proposed method showed better performance than the SOTA models with regard to the mean IoU and overall accuracy.

Big Data Architecture Design for the Development of Hyper Live Map (HLM)

  • Moon, Sujung;Pyeon, Muwook;Bae, Sangwon;Lee, Dorim;Han, Sangwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.2
    • /
    • pp.207-215
    • /
    • 2016
  • The demand for spatial data service technologies is increasing lately with the development of realistic 3D spatial information services and ICT (Information and Communication Technology). Research is being conducted on the real-time provision of spatial data services through a variety of mobile and Web-based contents. Big data or cloud computing can be presented as alternatives to the construction of spatial data for the effective use of large volumes of data. In this paper, the process of building HLM (Hyper Live Map) using multi-source data to acquire stereo CCTV and other various data is presented and a big data service architecture design is proposed for the use of flexible and scalable cloud computing to handle big data created by users through such media as social network services and black boxes. The provision of spatial data services in real time using big data and cloud computing will enable us to implement navigation systems, vehicle augmented reality, real-time 3D spatial information, and single picture based positioning above the single GPS level using low-cost image-based position recognition technology in the future. Furthermore, Big Data and Cloud Computing are also used for data collection and provision in U-City and Smart-City environment as well, and the big data service architecture will provide users with information in real time.

Object Detection and Post-processing of LNGC CCS Scaffolding System using 3D Point Cloud Based on Deep Learning (딥러닝 기반 LNGC 화물창 스캐닝 점군 데이터의 비계 시스템 객체 탐지 및 후처리)

  • Lee, Dong-Kun;Ji, Seung-Hwan;Park, Bon-Yeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.303-313
    • /
    • 2021
  • Recently, quality control of the Liquefied Natural Gas Carrier (LNGC) cargo hold and block-erection interference areas using 3D scanners have been performed, focusing on large shipyards and the international association of classification societies. In this study, as a part of the research on LNGC cargo hold quality management advancement, a study on deep-learning-based scaffolding system 3D point cloud object detection and post-processing were conducted using a LNGC cargo hold 3D point cloud. The scaffolding system point cloud object detection is based on the PointNet deep learning architecture that detects objects using point clouds, achieving 70% prediction accuracy. In addition, the possibility of improving the accuracy of object detection through parameter adjustment is confirmed, and the standard of Intersection over Union (IoU), an index for determining whether the object is the same, is achieved. To avoid the manual post-processing work, the object detection architecture allows automatic task performance and can achieve stable prediction accuracy through supplementation and improvement of learning data. In the future, an improved study will be conducted on not only the flat surface of the LNGC cargo hold but also complex systems such as curved surfaces, and the results are expected to be applicable in process progress automation rate monitoring and ship quality control.

Design and Implementation of Multi-Cloud Service Common Platform (멀티 클라우드 서비스 공통 플랫폼 설계 및 구현)

  • Kim, Sooyoung;Kim, Byoungseob;Son, Seokho;Seo, Jihoon;Kim, Yunkon;Kang, Dongjae
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.1
    • /
    • pp.75-94
    • /
    • 2021
  • The 4th industrial revolution needs a fusion of artificial intelligence, robotics, the Internet of Things (IoT), edge computing, and other technologies. For the fusion of technologies, cloud computing technology can provide flexible and high-performance computing resources so that cloud computing can be the foundation technology of new emerging services. The emerging services become a global-scale, and require much higher performance, availability, and reliability. Public cloud providers already provide global-scale services. However, their services, costs, performance, and policies are different. Enterprises/ developers to come out with a new inter-operable service are experiencing vendor lock-in problems. Therefore, multi-cloud technology that federatively resolves the limitations of single cloud providers is required. We propose a software platform, denoted as Cloud-Barista. Cloud-Barista is a multi-cloud service common platform for federating multiple clouds. It makes multiple cloud services as a single service. We explain the functional architecture of the proposed platform that consists of several frameworks, and then discuss the main design and implementation issues of each framework. To verify the feasibility of our proposal, we show a demonstration which is to create 18 virtual machines on several cloud providers, combine them as a single resource, and manage it.

An Efficient Log Data Processing Architecture for Internet Cloud Environments

  • Kim, Julie;Bahn, Hyokyung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.1
    • /
    • pp.33-41
    • /
    • 2016
  • Big data management is becoming an increasingly important issue in both industry and academia of information science community today. One of the important categories of big data generated from software systems is log data. Log data is generally used for better services in various service providers and can also be used to improve system reliability. In this paper, we propose a novel big data management architecture specialized for log data. The proposed architecture provides a scalable log management system that consists of client and server side modules for efficient handling of log data. To support large and simultaneous log data from multiple clients, we adopt the Hadoop infrastructure in the server-side file system for storing and managing log data efficiently. We implement the proposed architecture to support various client environments and validate the efficiency through measurement studies. The results show that the proposed architecture performs better than the existing logging architecture by 42.8% on average. All components of the proposed architecture are implemented based on open source software and the developed prototypes are now publicly available.