• Title/Summary/Keyword: Cloud Analysis

Search Result 1,464, Processing Time 0.033 seconds

Exploratory Big Data Analysis of Albert Camus's La Peste in Post Corona era (포스트 코로나 시대 알베르 카뮈의 『페스트』에 관한 탐색적 빅데이터 분석)

  • MIN, Jinyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.432-438
    • /
    • 2021
  • This dissertation's object is to confirm the drastic popularity of La Peste of Albert Camus in Korea post-corona society using big data as the mean of inductive research. Analyzing news articles concerning Camus and investigating word frequency of the book La Peste will affirm the implications La Peste has on current Korea society as the outbreak spreads. As an analysis tool, Bigkinds of Korea Press Foundation and Nuagedemots, the French version of Word Cloud were used. For the past 30 years, Albert Camus has been known in Korea as the writer of L'étranger, but after the epidemic, he earned more reputation with La Peste. Compared to L'étranger that rebelled against the world's absurdity with ennui, La peste emphasizes the importance of resistance accompanied by solidarity. La peste conveys hope by depicting disastrous situations of citizens who confront the plague by organizing a health college. The novel delivers a lot of ethical inspiration to humanity in this exceptional circumstance of COVID-19.

Monetary policy synchronization of Korea and United States reflected in the statements (통화정책 결정문에 나타난 한미 통화정책 동조화 현상 분석)

  • Chang, Youngjae
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.1
    • /
    • pp.115-126
    • /
    • 2021
  • Central banks communicate with the market through a statement on the direction of monetary policy while implementing monetary policy. The rapid contraction of the global economy due to the recent Covid-19 pandemic could be compared to the crisis situation during the 2008 global financial crisis. In this paper, we analyzed the text data from the monetary policy statements of the Bank of Korea and Fed reflecting monetary policy directions focusing on how they were affected in the face of a global crisis. For analysis, we collected the text data of the two countries' monetary policy direction reports published from October 1999 to September 2020. We examined the semantic features using word cloud and word embedding, and analyzed the trend of the similarity between two countries' documents through a piecewise regression tree model. The visualization result shows that both the Bank of Korea and the US Fed have published the statements with refined words of clear meaning for transparent and effective communication with the market. The analysis of the dissimilarity trend of documents in both countries also shows that there exists a sense of synchronization between them as the rapid changes in the global economic environment affect monetary policy.

Interpretation of the Forest Therapy Process and Effect Verification through KeyWord Analysis of Literature on Forest Therapy (산림치유 효과 검증 연구의 주요어 분석을 통한 치유 발현과정 해석)

  • Park, Kyeong-Ja;Shin, Chang-Seob;Kim, Dongsoo
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.1
    • /
    • pp.82-90
    • /
    • 2021
  • In this study, the validity of the forest therapy process, in which forest activities using forest therapy factors lead to immunity promotion and health promotion, was analyzed theoretically and qualitatively to refine and systemize the forest therapy concept. Research and analysis data were collected from the websites of institutions related to forest therapy; 33 theses and 33 original research articles from 2000 to March 2020 were searched for forest therapy key words, as well as the prize winning work of the 2016 forest therapy experience essay. A word cloud was generated by frequency of nouns and adjectives and from the key words in the web pages, theses, articles, and the forest therapy experience essay. Through interpretation of word frequency, the systemic flow of forest therapy was defined. The results suggest that the source of forest therapy's power was a positive experience of the forest and an improved attitude toward nature as well as forest therapeutic factors. The therapeutic effect is maximized through the forest healing program, leading to physical and mental resilience and resistance; consequently, health and immunity are promoted. From this study, forest therapy is proposed as "a health promotion activity for the psychological, physical, and spiritual resilience of the subjects through various environmental factors of the forest, positive experiences, and attitudes toward the forest."

An Exploratory Research on the Effects for SMEs of the Technology Battle between the United States and China - A Focus on Information Security Issues of Huawei (미·중 기술 갈등에 따른 우리나라 중소기업의 파급효과에 관한 탐색적 연구 -화웨이 정보보안 이슈를 중심으로 -)

  • Park, Munsu;Son, Wonbae
    • Korean small business review
    • /
    • v.42 no.1
    • /
    • pp.43-56
    • /
    • 2020
  • The technology conflict between the U.S. and China is deepening recently. The U.S.-China battle began as a national security issue but is comprehending as a U.S.'s check for China's rapid technological advancement. China is rapidly growing in several indexes including R&D expenditure, patent application, and publications, and is challenging the U.S. in 5G and Artificial Intelligence. In 2018, Huawei became the largest 5G network/equipment provider and second largest smart phone manufacturer in the world. Now, Huawei is outperforming at AI chipset manufacturing, Bigdata analysis and cloud, positioning to become a critical player in the 4th industrial revolution. The purpose of this research is to analyze the effect of recent Huawei issues to Korean SMEs focusing on the relation between Huawei and Korean companies; the cooperation status from the Global Value Chain (GVC) perpsective, and Korean government's policies related to Huawei's information security issues will be the three main frames for the analysis. Then, this research proposes policy implications such as increasing Korea's competitiveness in manufacturing and information security.

Real-Time GPU Task Monitoring and Node List Management Techniques for Container Deployment in a Cluster-Based Container Environment (클러스터 기반 컨테이너 환경에서 실시간 GPU 작업 모니터링 및 컨테이너 배치를 위한 노드 리스트 관리기법)

  • Jihun, Kang;Joon-Min, Gil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.11
    • /
    • pp.381-394
    • /
    • 2022
  • Recently, due to the personalization and customization of data, Internet-based services have increased requirements for real-time processing, such as real-time AI inference and data analysis, which must be handled immediately according to the user's situation or requirement. Real-time tasks have a set deadline from the start of each task to the return of the results, and the guarantee of the deadline is directly linked to the quality of the services. However, traditional container systems are limited in operating real-time tasks because they do not provide the ability to allocate and manage deadlines for tasks executed in containers. In addition, tasks such as AI inference and data analysis basically utilize graphical processing units (GPU), which typically have performance impacts on each other because performance isolation is not provided between containers. And the resource usage of the node alone cannot determine the deadline guarantee rate of each container or whether to deploy a new real-time container. In this paper, we propose a monitoring technique for tracking and managing the execution status of deadlines and real-time GPU tasks in containers to support real-time processing of GPU tasks running on containers, and a node list management technique for container placement on appropriate nodes to ensure deadlines. Furthermore, we demonstrate from experiments that the proposed technique has a very small impact on the system.

The Process of Forming Ego and the Impact of Others on the Teaching Careers of Students Majoring in Science Education: A Lacanian Psychoanalytic Inquiry (사범대학 과학교육전공 재학생들의 교직에 대한 자아형성 과정과 타자의 영향 -Lacan의 정신분석학적 탐구-)

  • Hyojeong Hwang;Eunju Park;Jun-Ki Lee
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.4
    • /
    • pp.333-349
    • /
    • 2023
  • This study employs Lacan's psychoanalytic approach to reinterpret the images of others and teachers that influence the process of self-formation within the teaching profession as students enter a university of education Seventy-four first- and second-year students majoring in science education at the College of Education from three regions across the country participated in this study, which was conducted using Lacan's L schematic as a representative theoretical framework. Through qualitative analysis and a word cloud analysis, it was confirmed that the students developed perceptions of the teaching profession based on somewhat fictitious and unrealistic teacher images, while others actively intervened in the process of career decision-making. In addition, although parents or teachers mainly occupied the realm of the Other, it was found that they failed to appropriately fulfill the role of the Other, in that they should have corrected the fictional image of teachers. Accordingly, it is necessary to recognize the limitations of ego-psychological career education that can deepen fixations on distorted self-images and, therefore, seek a new career education and counseling model through a psychoanalytic approach.

Computer Vision-based Continuous Large-scale Site Monitoring System through Edge Computing and Small-Object Detection

  • Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1243-1244
    • /
    • 2022
  • In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.

  • PDF

An Improvement of Kubernetes Auto-Scaling Based on Multivariate Time Series Analysis (다변량 시계열 분석에 기반한 쿠버네티스 오토-스케일링 개선)

  • Kim, Yong Hae;Kim, Young Han
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.3
    • /
    • pp.73-82
    • /
    • 2022
  • Auto-scaling is one of the most important functions for cloud computing technology. Even if the number of users or service requests is explosively increased or decreased, system resources and service instances can be appropriately expanded or reduced to provide services suitable for the situation and it can improves stability and cost-effectiveness. However, since the policy is performed based on a single metric data at the time of monitoring a specific system resource, there is a problem that the service is already affected or the service instance that is actually needed cannot be managed in detail. To solve this problem, in this paper, we propose a method to predict system resource and service response time using a multivariate time series analysis model and establish an auto-scaling policy based on this. To verify this, implement it as a custom scheduler in the Kubernetes environment and compare it with the Kubernetes default auto-scaling method through experiments. The proposed method utilizes predictive data based on the impact between system resources and response time to preemptively execute auto-scaling for expected situations, thereby securing system stability and providing as much as necessary within the scope of not degrading service quality. It shows results that allow you to manage instances in detail.

Relative Importance Analysis of Management Level Diagnosis for Consignee's Personal Information Protection (수탁사 개인정보 관리 수준 점검 항목의 상대적 중요도 분석)

  • Im, DongSung;Lee, Sang-Joon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.2
    • /
    • pp.1-11
    • /
    • 2018
  • Recently ICT, new technologies such as IoT, Cloud, and Artificial Intelligence are changing the information society explosively. But personal information leakage incidents of consignee's company are increasing more and more because of the expansion of consignment business and the latest threats such as Ransomware and APT. Therefore, in order to strengthen the security of consignee's company, this study derived the checklists through the analysis of the status such as the feature of consignment and the security standard management system and precedent research. It also analyzed laws related to consignment. Finally we found out the relative importance of checklists after it was applied to proposed AHP(Analytic Hierarchy Process) Model. Relative importance was ranked as establishment of an internal administration plan, privacy cryptography, life cycle, access authority management and so on. The purpose of this study is to reduce the risk of leakage of customer information and improve the level of personal information protection management of the consignee by deriving the check items required in handling personal information of consignee and demonstrating the model. If the inspection activities are performed considering the relative importance of the checklist items, the effectiveness of the input time and cost will be enhanced.

Oil Spill Monitoring in Norilsk, Russia Using Google Earth Engine and Sentinel-2 Data (Google Earth Engine과 Sentinel-2 위성자료를 이용한 러시아 노릴스크 지역의 기름 유출 모니터링)

  • Minju Kim;Chang-Uk Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.311-323
    • /
    • 2023
  • Oil spill accidents can cause various environmental issues, so it is important to quickly assess the extent and changes in the area and location of the spilled oil. In the case of oil spill detection using satellite imagery, it is possible to detect a wide range of oil spill areas by utilizing the information collected from various sensors equipped on the satellite. Previous studies have analyzed the reflectance of oil at specific wavelengths and have developed an oil spill index using bands within the specific wavelength ranges. When analyzing multiple images before and after an oil spill for monitoring purposes, a significant amount of time and computing resources are consumed due to the large volume of data. By utilizing Google Earth Engine, which allows for the analysis of large volumes of satellite imagery through a web browser, it is possible to efficiently detect oil spills. In this study, we evaluated the applicability of four types of oil spill indices in the area of various land cover using Sentinel-2 MultiSpectral Instrument data and the cloud-based Google Earth Engine platform. We assessed the separability of oil spill areas by comparing the index values for different land covers. The results of this study demonstrated the efficient utilization of Google Earth Engine in oil spill detection research and indicated that the use of oil spill index B ((B3+B4)/B2) and oil spill index C (R: B3/B2, G: (B3+B4)/B2, B: (B6+B7)/B5) can contribute to effective oil spill monitoring in other regions with complex land covers.