• Title/Summary/Keyword: Closed-loop distribution system

Search Result 39, Processing Time 0.034 seconds

Modeling and Design of Zero-Voltage-Switching Controller for Wireless Power Transfer Systems Based on Closed-Loop Dominant Pole

  • Chen, Cheng;Zhou, Hong;Deng, Qijun;Hu, Wenshan;Yu, Yanjuan;Lu, Xiaoqing;Lai, Jingang
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1235-1247
    • /
    • 2019
  • Zero-Voltage-Switching (ZVS) operation for a Wireless Power Transfer (WPT) system can be achieved by designing a ZVS controller. However, the performance of the controller in some industrial applications needs to be designed tightly. This paper introduces a ZVS controller design method for WPT systems. The parameters of the controller are designed according to the desired performance based on the closed loop dominant pole placement method. To describe the dynamic characteristics of the system ZVS angle, a nonlinear dynamic model is deduced and linearized using the small signal linearization method. By analyzing the zero-pole distribution, a low-order equivalent model that facilitates the controller design is obtained. The parameters of the controller are designed by calculating the time constant of the closed-loop dominant poles. A prototype of a WPT system with the designed controller and a five-stage multistage series variable capacitor (MSVC) is built and tested to verify the performance of the controller. The recorded response curves and waveforms show that the designed controller can maintain the ZVS angle at the reference angle with satisfactory control performance.

A PSCAD Modeling of Protection Relay of On-Line Distribution System (PSCAD를 이용한 상시 루프배전시스템의 보호계전기 모델)

  • Kim, Jin-Su;Park, Jin-Hyeon;Cho, Bo-Hyeon;Moon, Won-Sik;Cho, Sung-Min;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.406-407
    • /
    • 2011
  • The closed-loop distribution system is more flexible and more reliable than radial system. If any type fault occurs, the reliability of system can be better by providing electrical energy through another distribution line. However, it needs protection device coordination of different type. Typically, it is available by using directional overcurrent relay (67). This paper gives a solution about loop protection relay modeling which can be used by the simulation tools.

  • PDF

Thermal Behavior of Vertical Ground Heat Exchanger by Numerical Simulation (수치해석을 통한 수직 밀폐형 지중열 교환기의 열전달 거동 연구)

  • Gil, Hu-Jeong;Lee, Chul-Ho;Kim, Ju-Young;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1638-1646
    • /
    • 2008
  • This paper presents a series of numerical simulations on the thermal performance and sectional efficiency of a closed-loop vertical ground heat exchanger (U-loop) equipped in a geothermal heat pump system (GHP). A 2-D finite element analysis, ANSYS, was employed to evaluate the temperature distribution on the borehole cross section involving HDPE pipe/grout/soil formation to compare the sectional efficiency between the conventional U-loop and a new latticed HDPE pipe system which is equipped with a thermally insulating latice in order to reduce thermal interference between the inflow and outflow pipes. In addition, a 3-D finite volume analysis (Fluent) was used to simulate the operating process of the closed-loop vertical ground heat exchanger by considering the effect of grout's thermal properties, rate of circulation pump, distance between the inflow and outflow pipes, and the effectiveness of the latticed HDPE pipe system. It was observed that the thermal interference between the two strands of U-loop is of importance in determining the efficiency of the ground heat exchanger, and thus it is highly recommendable to modify the cross section configuration of the conventional U-loop system by including a thermally insulating latice between the two strands.

  • PDF

Analysis of thermal stress and heat transfer due to circulating fluid in ground heat exchanger (지중 열교환기의 순환수에 의한 열응력 및 열전달 거동 분석)

  • Gil, Hu-Jeong;Lee, Kang-Ja;Lee, Chul-Ho;Choi, Hang-Seok;Choi, Hyo-Bum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.385-395
    • /
    • 2009
  • In this study, a series of numerical analysis has been accomplished on the thermal performance and sectional efficiency of a closed-loop vertical ground heat exchanger (U-loop) in a geothermal heat pump system (GHP) considering the circulating fluid, pipe, grout and soil formation. A finite element analysis program, ABAQUS, was employed to evaluate the temperature distribution on the cross section of the U-loop system involving HDPE pipe/grout/formation and to compare sectional efficiency between the conventional U-loop and a new latticed HDPE pipe system. Especially, the latticed pipe is equipped with a thermal insulation zone in order to reduce thermal interference between the inflow pipe and the outflow pipe. Also, a thermal stress analysis was performed with the aid of ABAQUS. 3-D finite volume analysis program, FLUENT, was adapted to analyze a coupled system between fluid circulation in the pipe and heat transfer and simulate an operating process of the closed-loop vertical ground heat exchanger. In this analysis, the effect of the thermal properties of grout, rate of circulation pump, distance between the inflow pipe and the outflow pipe, and the effectiveness of the latticed HDPE pipe system are taken into account.

  • PDF

Study on Reducing Logistics Costs and Inventory Control System according to facilities integration in the Closed-Loop Supply Chain Environment (순환형 공급체인 환경에서 시설 통합에 의한 물류원가 절감 및 재고관리시스템 모델구축에 관한 연구)

  • Lee, Jeong Eun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.5
    • /
    • pp.81-90
    • /
    • 2014
  • It is an element certainly required for the cost reduction of a company that forward and reverse logistics chain are unified and constitutes a resource closed-loop supply chain (CLSC). In this study, the inventory control which unifies inventory of distribution centers (DCs) of forward logistics and processing center of reverse logistics in the CLSC environment is proposed. The inventory system model for newly-constructed CLSC considers the JIT(Just-In-Time) delivery from the processing center to the manufacturer, including the making of decisions on whether to wait for the arrival of end-of-life products or to back-order necessary products for manufacturer when the supply of end-of-life products at the processing center via the returning center is insufficient for the demands of the manufacturers. The validity of the proposed model was verified using the genetic algorithm (GA). In order that a parameter might investigate the effect which it has on a solution, the simulation was carried out for priGA(priority-based GA) on three kinds of parameter conditions. Moreover, mhGA(modified hybrid GA) to which a parameter is adjusted for every Study on Reducing Logistics Costs and Inventory Control System according to facilities integration in the Closed-Loop Supply Chain Environment generation, the simulation was carried out to a four-kind numerical example.

A PROTECTION AND FAULT ISOLATION SECTION ALGORITHM USING COMMUNICATION BASED ON INTELLIGENT FOR DISTRIBUTION SYSTEM (배전계통에서의 agent기반의 보호 및 고장 구간 분리 알고리즘)

  • Jin, Young-Taek;Park, Sung-Jun;Jo, Yong-Hwan;Xiang, Ling;Guan, Kangle;Lee, Seung-Jae;Choi, Myeon-Song
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.722-723
    • /
    • 2011
  • 국가차원의 신재생에너지 활성화 방안에 따라 지자체 등의 분산전원 시설계획이 점차 증가하고 있다. 이에 따라서 기존의 radial 구조가 아닌 closed loop을 운영하기 위해서는 보호협조에 대한 문제가 확실히 해결되지 않고서는 계통을 안정적으로 운영할 수 없다. 따라서 본 논문에서는 radial 계통 및 계통이 변경되거나 분산전원이 연계 시 closed loop 구조를 가지는 계통의 보호기기 및 자동화 개폐기들을 Agent화 시켜 통신을 이용한 보호 및 고장 구간 분리 알고리즘을 제안 하고자 한다.

  • PDF

A Development and Performance Test of Voltage Measurement Accuracy Assessment System for Distribution Equipment (배전기기 전압계측 정밀도 평가시스템 개발 및 성능시험)

  • Cho, Jin-Tae;Kim, Ju-Yong;Lee, Hak-Ju;Kim, Jae-Han
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.83-89
    • /
    • 2013
  • Power distribution system has been changed from radial system to closed loop or mesh system due to connection of distributed generation growth. Data from distribution equipments which are installed at distribution line is required to be accurate for the performance of DMS(Distribution Management System). This paper analyzes the voltage measurement data from distribution equipment. However, the results of the analysis are confirmed to have some errors in voltage measurement data from distribution equipment. These errors come from aging of voltage sensor in distribution equipment and inaccurate data transfer to FRTU(feeder remote terminal unit) through the controller. The main problem is that the voltage measurement data of distribution equipment can not be assessed after it's first installation at the distribution line. The voltage measurement accuracy assessment system is to assess the voltage measurement data from distribution equipment on hot-line. This study had a field test to verify the performance of system.

An Application of the Optimal Routing Algorithm for Radial Power System using Improved Branch Exchange Technique (개선된 선로교환 기법을 이용한 방사상 전력계통의 최적 라우팅 알고리즘의 적용)

  • Kim, Byeong-Seop;Sin, Jung-Rin;Park, Jong-Bae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.6
    • /
    • pp.302-310
    • /
    • 2002
  • This paper presents an application of a improved branch exchange (IBE) algorithm with a tie branch power (TBP) flow equation to solve the Optimal Routing problem for operation of a radial Power system including power distribution system. The main objective of the Optimal Routing problem usually is to minimize the network real power loss and to improve the voltage profile in the network. The new BE algorithm adopts newly designed methods which are composed by decision method of maximum loss reduction and new index of loss exchange in loop network Thus, the proposed algorithm in this paper can search the optimal topological structures of distribution feeders by changing the open/closed states of the sectionalizing and tie switches. The proposed algorithm has been evaluated with the practical IEEE 32, 69 bus test systems and KEPCO 148 bus test system to show favorable performance gained.

Regional Distribution of Ground Thermal Conductivity for Vertical Closed Type Ground Heat Exchanger Design (수직 밀폐형 지중열교환기 설계를 위한 지중 열전도도의 지역별 분포)

  • Jung, Kye-Hoon;Sohn, Byong-Hu;Lim, Hyo-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.423-428
    • /
    • 2007
  • This study was performed to construct a geothermal data base about thermal conductivity of ground heat exchanger and thermal properties of grouting material which used to refill the borehole. We have acquired geothermal data sets from 39 sites over wide area of South Korea except to Jeju island. From data analysis, the range of thermal conductivity is 1.5$\sim$4.0 W/mK. It means that thermal conductivity varies with grouting material as well as regional geology and ground water system.

  • PDF

Design and Implementation of Rate-Based Traffic Controller for Performance Improvement of FA-Networks Employing LonWorks (LonWorks를 이용한 공장자동화용 네트웍의 성능향상을 위한 전송률기반 트래픽제어기의 설계와 구현)

  • Kim, Byoung-Hee;Cho, Kwang-Hyun;Park, Kyoung-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.313-319
    • /
    • 2000
  • As the interest of flexible manufacturing systems and computer integrated manufacturing systems increase, the distribution of centralized control systems using industrial control networks is getting more attention. In this paper, we investigate the rate-based traffic control of industrial control networks to improve the performance regarding the throughput, fairness, and error rates. Especially, we consider the protocol of Lon-$Works^{(TM)}$ which consists of all OSI 7-layers and supports various communication media at a low cost. Basically, the proposed rate-based traffic control system is closed loop by utilizing the feedback channel errors, which shows improved performance when compared with other industrial control networks commonly operated in open loop. To this end, an additional network node called monitoring node is introduced to check the channel status without increasing the channel load. The Proposed control loop is in effect whenever the feedback channel error becomes greater than an admittable value. We demonstrate the improved performance of the controlled network system in view of throughput and fairness measures by implementing the lab-scale network system based on LonWorks and through the experimentation upon it.

  • PDF