• 제목/요약/키워드: Closed-die Compaction

검색결과 4건 처리시간 0.018초

압분공정의 유한요소 해석을 위한 AZO 분말의 Closed-die Compaction 실험 (Closed-die Compaction of AZO Powder for FE Simulation of Powder Compaction)

  • 김용배;이종섭;이상목;박훈재;이근안
    • 소성∙가공
    • /
    • 제21권4호
    • /
    • pp.228-233
    • /
    • 2012
  • In this study, powder compaction of AZO (alumina doped zinc oxide) powder was performed with a MTS 810 test system using a cylindrical die having a diameter of 10mm. Pressure-density curves were measured based on the load cell and displacement of the punch. The AZO powder compacts with various densities were formed to investigate the mechanical properties such as fracture stress of the AZO powder as a function of the compact density. Two types of compression tests were conducted in order to estimate the fracture stress using different loading paths: a diameteral compression test and a uniaxial compression test. The pressure-density curves of the AZO powder were obtained and the fracture stress of the compacted powders with various densities was estimated. The results show that the compact pressure dramatically increases as the density increases. Based on the experimental results, calibration of the modified Drucker-Prager/Cap model of the AZO powder for use in FE simulations was developed.

Dynamic compaction of cold die Aluminum powders

  • Babaei, Hashem;Mostofi, Tohid Mirzababaie;Alitavoli, Majid;Namazi, Nasir;Rahmanpoor, Ali
    • Geomechanics and Engineering
    • /
    • 제10권1호
    • /
    • pp.109-124
    • /
    • 2016
  • In this paper, process of dynamic powder compaction is investigated experimentally using impact of drop hammer and die tube. A series of test is performed using aluminum powder with different grain size. The energy of compaction of powder is determined by measuring height of hammer and the results presented in term of compact density and rupture stress. This paper also presents a mathematical modeling using experimental data and neural network. The purpose of this modeling is to display how the variations of the significant parameters changes with the compact density and rupture stress. The closed-form obtained model shows very good agreement with experimental results and it provides a way of studying and understanding the mechanics of dynamic powder compaction process. In the considered energy level (from 733 to 3580 J), the relative density is varied from 63.89% to 87.41%, 63.93% to 91.52%, 64.15% to 95.11% for powder A, B and C respectively. Also, the maximum rupture stress are obtained for different types of powder and the results shown that the rupture stress increases with increasing energy level and grain size.

The New Generation of Hydraulic Presses-Progress in the Forming Process

  • Prommer, Eric
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1276-1277
    • /
    • 2006
  • The ever increasing requirements on today's compacts with regard to their geometry and precision call for flexible high-precision and most capable production systems. DORST Technologies has coped with these requirements by developing the new HP series for pressing forces between 1600 kN and 16000 kN and the new HS series for pressing forces between 150 kN and 1200 kN. These fully hydraulic presses featuring upper ram, lower ram, core rod, filler, up to 4 lower tool levels and up to 4 upper tool levels with closed-loop controlled movements. Thanks to latest servo technology and an electronic bus system it is possible to have all movements closed-loop controlled in the desired relation to each other. Thus, today's hydraulic presses provide high stroke rates, low energy consumption and a user-friendly interface. The input of data is carried out via clearly arranged screen masks on a touch-screen. The innovative DORST $IPG^{(R)}$ (Intelligent Program Generator) has been designed to support the set-up staff in preparing and optimizing the toolprogram. The combination of the machine type with the hydraulic unit determines the productivity in consideration of the specific application and the part to be pressed. Thanks to the closed-loop control circuits, DORST hydraulic automatic presses of the latest generation ensure unmatched precision and repeatability - and consequently process reliability - often without necessitating subsequent machining steps.

  • PDF

회전 성형법에 의한 분말단조 제품특성에 관한 연구 (A Study on the Properties of Cold Forging P/M Products by Incremetal Forming Process)

  • 윤덕재;나경환;김영은
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 춘계학술대회논문집
    • /
    • pp.31-40
    • /
    • 1995
  • Powder metallurgy process has many advantages such as hight efficientyof material, mass productivity and complex shape production with good mechanical properties. Among the powder forming processes, incremental forging allows the consolidation to be achieved with amaller force then those required by conventional forging. In particular the proces known as rotary forging is an unique and prodominant process known as rotary forging is an unique and prodominant process in which the working constraints approximate to those in normal closed die forging. This study is concerned with the powder compaction by rotary forging process. An experimental rotary forging press with 500kN load capacity has been developed, which is equippe dwith the rotational conicla die inclined to the central axis of the press at arbitrary angle. It is found that the highly densified P/M parts can be obtained by rotary forging process and the material properties are superior to those of the conventrional sintered parts. The detailedcomparision of the mechanical properties by rotary forging process with those by conventional process are given.

  • PDF