• Title/Summary/Keyword: Closed tunnels

Search Result 38, Processing Time 0.019 seconds

A study on the smoke control performance of the damper exhaust system at FCEV fire in tunnel for small vehicles (소형차 전용터널 내 수소연료전지차 화재시 집중배기방식의 제연성능에 관한 연구)

  • Hong, Seo-Hee;Baek, Doo-San
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.745-756
    • /
    • 2022
  • The road tunnel is a semi-closed space that is blocked on all sides except the entrance and exit, and in the event of a fire, the smoke of the fire spreads longitudinally due to heat buoyancy caused by the fire and air currents that always exist in the tunnel. To solve this problem, smoke removal facilities are installed in road tunnels to secure a safe evacuation environment by controlling the direction of movement of smoke or directly smoking at fire points. In urban areas, the service level of urban roads decreases due to the increase in traffic due to the increase in population, and as a solution, the construction of underground roads in urban areas is increasing. When a fire occurs during hydrogen leakage through TPRD of a hydrogen fuel cell vehicle (FCEV), the fire intensity depends on the amount of leakage, and the maximum fire intensity depends on the orifice diameter of the TPRD. Considering the TPRD orifice diameter of 1.8 mm, this study analyzed the diffusion distance of fire smoke according to the wind speed of the roadway and the opening interval of the large exhaust port when the maximum fire intensity was 15 MW. As a result, it was analyzed that air flow in the tunnel could be controlled if the wind speed of the road in the tunnel was less than 1.25 m/s, and smoke could be controlled within 200 m from the fire if the damper interval was 50 m and 100 m.

A basic study for explosion pressure prediction of hydrogen fuel vehicle hydrogen tanks in underground parking lot (지하주차장 수소연료차 수소탱크 폭발 압력 예측을 위한 기초 연구)

  • Lee, Ho-Hyung;Kim, Hyo-Gyu;Yoo, Ji-Oh;Lee, Hu-Yeong;Kwon, Oh-Seung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.605-612
    • /
    • 2021
  • Amid growing global damage due to abnormal weather caused by global warming, the introduction of eco-friendly cars is accelerating to reduce greenhouse gas emissions from internal combustion engines. Accordingly, many studies are being conducted in each country to prepare for the explosion of hydrogen fuel in semi-closed spaces such as tunnels and underground parking lots to ensure the safety of hydrogen-electric vehicles. As a result of predicting the explosion pressure of the hydrogen tank using the equivalent TNT model, it was found to be about 1.12 times and 2.30 times higher at a height of 1.5 meters, respectively, based on the case of 52 liters of hydrogen capacity. A review of the impact on the human body and buildings by converting the predicted maximum explosive pressure into the amount of impact predicted that all predicted values would result in lung damage or severe partial destruction. The predicted degree of damage was applied only by converting the amount of impact caused by the explosion, and considering the additional damage caused by the explosion, it is believed that the actual damage will increase further and safety and disaster prevention measures should be taken.

A Study of Evaluation System of NATM Tunnel using Delphi and AHP (델파이 및 AHP 기법을 활용한 NATM 터널의 평가체계 연구)

  • Park, Kwang-Rim;Chung, Jee-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.25-34
    • /
    • 2017
  • Since the 30-year-old facility is expected to surge from 10.5% to 23.9% in 10 years, the new evaluation system is needed to establish efficient maintenance system for securing the safety and extending the life span of existing facilities. In this study, Delphi and AHP(Analytic Hierarchy Process) was conducted to provide a systematic new evaluation system for the NATM tunnel, which is the most frequently constructed structure of the existing tunnel. Since the existing assessment systems are limited in scope of evlauatuon criteria, the survey was conducted in conjunction with closed questionnaires on existing items and open questionnaires for eliciting new items. In results, suitable evaluation factors were derived for the NATM tunnel through the validation of the survey results. Also after calculating weighted value of the derived assessment item using AHP technique, a new evaluation system is proposed to meet the characteristics of the NATM tunnel, so that they can be used as reference materials for revising and supplementing detatiled guidelines in the future.

Anti-seismic behavior of composite precast utility tunnels based on pseudo-static tests

  • Yang, Yanmin;Tian, Xinru;Liu, Quanhai;Zhi, Jiabo;Wang, Bo
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.233-244
    • /
    • 2019
  • In this work, we have studied the effects of different soil thicknesses, haunch heights, reinforcement forms and construction technologies on the seismic performance of a composite precast fabricated utility tunnel by pseudo-static tests. Five concrete specimens were designed and fabricated for low-cycle reciprocating load tests. The hysteretic behavior of composite precast fabricated utility tunnel under simulated seismic waves and the strain law of steel bars were analyzed. Test results showed that composite precast fabricated utility tunnel met the requirements of current codes and had good anti-seismic performance. The use of a closed integral arrangement of steel bars inside utility tunnel structure as well as diagonal reinforcement bars at its haunches improved the integrity of the whole structure and increased the bearing capacity of the structure by about 1.5%. Increasing the thickness of covering soil within a certain range was beneficial to the earthquake resistance of the structure, and the energy consumption was increased by 10%. Increasing haunch height within a certain range increased the bearing capacity of the structure by up to about 19% and energy consumption by up to 30%. The specimen with the lowest haunch height showed strong structural deformation with ductility coefficient of 4.93. It was found that the interfaces of haunches, post-casting self-compacting concrete, and prefabricated parts were the weak points of utility tunnel structures. Combining the failure phenomena of test structures with their related codes, we proposed improvement measures for construction technology, which could provide a reference for the construction and design of practical projects.

Influence of the Existing Cavern on the Stability of Adjacent Tunnel Excavation by Small-Scale Model Tests (축소모형시험을 통한 공동이 근접터널 굴착에 미치는 영향평가)

  • Jung, Minchul;Hwang, Jungsoon;Kim, Jongseob;Kim, Seungwook;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.117-128
    • /
    • 2014
  • Generally, when constructing a tunnel close to existing structures, the tunnel must be built at a constant distance from the structures that is more than width of tunnel to minimize the impact of interference between an existing structures and new tunnel. Spacing of these closed tunnels should be designed considering soil state, size of tunnel and reinforcement method. Particularly when the ground is soft, a care should be taken with the tunnel plans because the closer the tunnel is to the existing structures, the greater the deformation becomes. As methods of reviewing the effect of cavities on the stability of a tunnel, field measurement, numerical analysis and scaled model test can be considered. In the methods, the scaled model test can reproduce the engineering characteristics of a rock in a field condition and the shape of structures using the scale factor even not all conditions cannot be considered. In this study, when construction of a tunnel close to existing structures, the method and considering factors of the scaled model test were studied to predict the actual tunnel behavior in planning stage. Furthermore, model test results were compared with the numerical analysis results for verifying the proposed model test procedure. Also, practical results were derived to verify the stability of a tunnel vis-a-vis cavities through the scaled model test, which assumed spacing distances of 0.25 D, 0.50 D, and 1.00 D between the cavities and tunnel as well as the network state distribution. The spacing distances of 1.0 D is evaluated as the critical distance by the results of model test and numerical analysis.

The study on performance evaluation of heat resistance and smoke control system using air-curtain system in tunnel (터널용 에어커튼 시스템의 내열 및 제연 성능 평가 연구)

  • Park, Byoung-Jik;Shin, Hyun-Jun;Yoo, Yong-Ho;Park, Jin-Ouk;Kim, Yang-Kyun;Kim, Hwi-Seong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.743-755
    • /
    • 2018
  • Tunnel is a semi-closed structure similar to underground space where the smoke generated from fire fills the space fast while escaping from the space slow. Because of such characteristics, when the fire breaks out by traffic accident, the vehicles are jammed making it difficult for the people to evacuate from the scene as well as for the fire engine to gain access to the scene. For such reasons, tunnels are globally categorized into some disaster classes for differentiated facilities and operation approaches. In Korea, less than a 1 km-long tunnel accounts for 80.0% and such a short tunnel which is categorized into Class III is not required to have smoke control system. In this study, a full-scale fire test was conducted in a bid to apply air curtain system using heat-resistant sirocco fan to a less than 1 km-long tunnel. To that end, heat resistance test to verify the normal operation at $250^{\circ}C$ for 60 minutes was conducted. Consequently, despite of rapid rising-temperature and increasing-carbon dioxide inside the air curtain (direction of fire in tunnel), initial condition was found to have been sustained outside the air curtain (opposite direction of fire in tunnel).

Characterizing Par ticle Matter on the Main Section of the Seoul Subway Line-2 and Developing Fine Particle Pollution Map (서울시 지하철 2호선 본선구간의 입자상물질 농도 특성 및 미세분진의 오염지도 개발)

  • Lee, Eun-Sun;Park, Min-Bin;Lee, Tae-Jung;Kim, Shin-Do;Park, Duck-Shin;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.2
    • /
    • pp.216-232
    • /
    • 2016
  • In present, the Seoul City is undergoing traffic congestion problems caused by rapid urbanization and population growth. Thus the City government has reorganized the mass transportation system since 2004 and the subway has become a very important means for public transit. Since the subway system is typically a closed environment, the indoor air quality issues have often raised by the public. Especially since a huge amount of PM (particulate matter) is emitted from ground tunnels passing through the subway train, it is now necessary to assess the characteristics and behaviors of fine PM inside the tunnel. In this study, the concentration patterns of $PM_1$, $PM_{2.5}$, and $PM_{10}$ in the Seoul subway line-2 were analyzed by real-time measurement during winter (Jan 13, 2015) and summer (Aug 7, 2015). The line-2 consisting of 51 stations is the most busy circular line in Seoul having the railway of 60.2 km length. The the one-day average $PM_{10}$ concentrations were $148{\mu}g/m^3$ in winter and $66.3{\mu}g/m^3$ in summer and $PM_{2.5}$ concentrations were $118{\mu}g/m^3$ and $58.5{\mu}g/m^3$, respectively. The $PM_{2.5}/PM_{10}$ ratio in the underground tunnel was lower than the outdoor ratio and also the ratio in summer is higher than in winter. Further the study examined structural types of underground subsections to explain the patterns of elevated PM concentrations in the line-2. The subsections showing high PM concentration have longer track, shorter curvature radius, and farther from the outdoor stations. We also estimated the outdoor PM concentrations near each station by a spatial statistical analysis using the $PM_{10}$ data obtained from the 40 Seoul Monitoring Sites, and further we calculated $PM_{2.5}/PM_{10}$ and $PM_1/PM_{10}$ mass ratios near the outdoor subway stations by using our observed outdoor $PM_1$, $PM_{2.5}$, and $PM_{10}$ data. Finally, we could develop pollution maps for outdoor $PM_1$ and $PM_{2.5}$ near the line-2 by using the kriging method in spatial analysis. This methodology may help to utilize existing $PM_{10}$ database when managing and control fine particle problems in Korea.

CFD analysis of the effect of hydrogen jet flame in road tunnel (도로 터널 내 수소 제트 화염에 대한 CFD 해석 연구)

  • Park, Jinouk;Yoo, Yongho;Kim, Hwiseong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.629-636
    • /
    • 2022
  • Domestic eco-friendly vehicles currently account for 5.8% of the total registered vehicles in Korea. Hydrogen vehicles, one of the representative eco-friendly vehicles, have grown rapidly as they have been expanded to the market based on the government's policy to boost the hydrogen industry. Therefore, it is time to expand the safety review of hydrogen vehicles in various directions according to the increase in supply. In this study, the effect of internal heat damage was analyzed when a jet flame was generated by a hydrogen car in a road tunnel. It was simulated using Fluent, and the amount of jet flame injection was selected in consideration of the hydrogen tank capacity of commercial hydrogen vehicles for road tunnels. In addition, the study was conducted with the direction of the jet flame and the nozzle distance from the tunnel wall as variables. From the results, when the jet flame erupted in the road tunnel, high radiant heat emission of more than 20 kW/m2 was generated in most areas within ±5 m in the longitudinal direction based on the vehicle (spray nozzle) and 5 to 7 m in the lateral direction based on the adjacent tunnel wall.