• 제목/요약/키워드: Closed test section

검색결과 72건 처리시간 0.023초

폐쇄형 시험부에서 케블라 덮개가 장착된 마이크로폰 어레이의 주파수 특성에 대한 실험적 연구 (A Experimental study on frequency characteristics of the microphone array covered with Kevlar in closed test section wind tunnel)

  • 황은수;최영민;한형석;김양원;조태환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 춘계학술대회 논문집
    • /
    • pp.128-134
    • /
    • 2014
  • A Experimental study on frequency characteristics of the microphone array covered with Kevlar in closed test section wind tunnel. Microphones that are flush mounted in a closed test section wall of wind tunnel are subject to very high flow noise resulting from the turbulence in the wall boundary layer. At this time the microphones measure the strong hydrodynamic fluctuations generated by the flow. The phenomena are referred to a microphone self-noise and a method for reducing this has studied. In this paper the array that covered with acoustically transparent Kevlar sheet was designed and made to reduce the flow-induced self-noise. For the validation frequency characteristics of the Kevlar, the microphone array was installed on the wall and test was performed for white noise and sine wave of several frequencies using loudspeaker. In addition, the paper compared the signals as a tension of Kevlar. The results were presented that tend to decrease the sound pressure level at high frequency above 3500Hz according to existence of Kevlar.

  • PDF

풍력터빈 성능시험을 위한 풍동 개념연구 (Conceptual Design Study of a Low-Speed Wind Tunnel for Performance Test of Wind Turbine)

  • 강승희;최우람;김해정;김용휘
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.431-434
    • /
    • 2009
  • Conceptual study of an open-circuit type low-speed wind tunnel for test of wind turbine blade is conducted. The tunnel is constituted of a settling chamber, a contraction, closed and open test sections, a diffuser, two corners, a cross leg and a fan and motor. For the performance test, the closed test section width of 1.8 m, height of 1.8 m and length of 5.25 m is selected. The open test section with dimension width of 1.8 m, height of 1.8 m and length of 4.14 m is adopted for aeroacoustic test. The contraction ratio is 9 to 1 and maximum speed in the closed test section is 67 m/sec. Input power in the tunnel is about 238 kW and its energy ratio is 3.6. The wind tunnel designed in present study will be an effective tool in research and development of wind turbine.

  • PDF

풍력터빈 성능시험을 위한 저속풍동 개념연구 (Conceptual Study of a Low-Speed Wind Tunnel for Performance Test of Wind Turbine)

  • 강승희
    • 한국항공운항학회지
    • /
    • 제19권4호
    • /
    • pp.24-29
    • /
    • 2011
  • Conceptual study of an open-circuit type low-speed wind tunnel for performance test of wind turbine blade and airfoil is conducted. The tunnel is constituted of a settling chamber, a contraction, closed test section, a diffuser, two corners, a cross leg and a fan and motor. For the performance test, the closed test section width of 1.8 m, height of 1.8 m and length of 5.25 m is selected. The contraction ratio is 9 to 1 and maximum speed in the test section is 67 m/sec. Input power in the tunnel is about 238 kW and its energy ratio is 3.6. The wind tunnel designed in present study will be an effective tool in research and development of wind turbine and airfoil.

폐쇄형 풍동 시험부 내의 비정상 흐름에 대한 Blockage 보정 기법 연구 (Blockage-Correction Method for Unsteady Flows in a Closed Test-Section Wind Tunnel)

  • 강승희;권오준;안승기
    • 한국항공우주학회지
    • /
    • 제34권12호
    • /
    • pp.67-74
    • /
    • 2006
  • 아음속풍동 폐쇄형 시험부내의 비정상 벽면효과 보정 연구의 일환으로 시험부 벽면압력을 사용하는 비정상 흐름에 대한 blockage 보정 기법을 개발하였다. 시험부 벽면압력은 프리에 급수로 전개하고, 전개된 각 계수를 벽면압력측정 방법을 사용하여 전 주기에 대해 일괄적으로 보정하는 준 정상상태 보정 방법을 제시하였다. 본 연구에서 제시된 방법을 검증하기 위해 수치적으로 계산된 폐쇄형 시험부내의 원형실린더 및 강제 진동하는 익형의 비정상 흐름에 적용하였다. 그 결과 본 연구에서 제시된 방법은 자유흐름 상태와 일치되는 blockage 보정 결과를 보임을 확인하였다.

A Simple Mixed-Based Approach for Thin-Walled Composite Blades with Two-Cell Sections

  • Jung Sung Nam;Park Il-Ju
    • Journal of Mechanical Science and Technology
    • /
    • 제19권11호
    • /
    • pp.2016-2024
    • /
    • 2005
  • In this work, a mixed beam approach that combines both the stiffness and the flexibility methods has been performed to analyze the coupled composite blades with closed, two-cell cross-sections. The Reissner's semi-complementary energy functional is used to derive the beam force-displacement relations. Only the membrane part of the shell wall is taken into account to make the analysis simple and also to deliver a clear picture of the mixed method. All the cross section stiffness coefficients as well as the distribution of shear across the section are evaluated in a closed-form through the beam formulation. The theory is validated against experimental test data, detailed finite element analysis results, and other analytical results for coupled composite blades with a two-cell airfoil section. Despite the simple kinematic model adopted in the theory, an accuracy comparable to that of two-dimensional finite element analysis has been obtained for cases considered in this study.

폐쇄형 풍동 시험부내의 진동하는 익형 주위 유동에 대한 비정상 벽면효과 연구 (UNSTEADY WALL INTERFERENCE EFFECT ON FLOWS AROUND AN OSCILLATING AIRFOIL IN CLOSED TEST-SECTION WIND TUNNELS)

  • 강승희;권오준;홍승규
    • 한국전산유체공학회지
    • /
    • 제10권2호
    • /
    • pp.60-68
    • /
    • 2005
  • For study on the unsteady wall interference effect, flows around a forced oscillating airfoil in closed test-section wind tunnels have been numerically investigated by solving compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with the Roe's flux-difference splitting and an implicit time-integration method coupled with dual time-step sub-iteration. The Spalart-Allmaras one-equation model is employed for the turbulence effect. The computed results of the oscillating airfoil having a thin wake showed that the lift curve slope is increased and the magnitude of hysteresis loop is reduced by the interference effects. Since the vortex around the airfoil is generated and convected downstream faster than the free-air condition, the phase of lift, drag and pitching moment coefficients was shifted. The pressure on the test section wall shows harmonic terms having the oscillating frequency contained in the wail effect.

CBT를 이용한 고체 추진제의 연소효율 도출 방법과 그레인 형상의 영향 분석 (Combustion Efficiency Estimation Method of Solid Propellants and the Effects of Grain Shape using Closed Bomb Test)

  • 박종근;성홍계;이원민;김은미
    • 한국추진공학회지
    • /
    • 제26권6호
    • /
    • pp.53-61
    • /
    • 2022
  • 본 연구에서는 CBT(Closed Bomb Test)시험을 통하여 고체추진제의 연소효율을 추정하는 방법을 제시하였다. CBT는 수백 기압에서 작동하므로 실기체의 영향을 고려하기 위해 Noble-Abel 상태방정식을 적용하였다. 또한 밀폐용기 벽면으로 발생하는 열손실을 고려하였다. 그레인의 연소로 인한 그레인의 체적 변화율 계산은 형상 함수(Form Function)를 적용하였으며, 총 8개의 다른 형태 그레인의 연소 효율을 도출하였다. 본 연구에서 제시한 이론모델의 적절성을 실험 결과인 압력-시간 선도와 비교하여 나타내었다. 그레인 형상과 추진제의 충진량에 따른 연소효율을 도출하였다.

H대학교 아음속 풍동 개념설계 (Concept Design of a H.A.U.'s Subsonic Wind Tunnel)

  • 장조원;전창수;김문상;이열;문희장;송병흠;김학봉
    • 한국항공운항학회지
    • /
    • 제13권4호
    • /
    • pp.92-99
    • /
    • 2005
  • A closed-circuit type wind tunnel is designed, which has a test section with the dimensions $1.2(W){\times}1.2(H){\times}3.4(L)$. A subsonic wind tunnel is designed to improves educational circumstances and promote ground tests. It is constituted of an exchangeable test section, first and second diffusers, a fan, a settling chamber, a contraction, and 4 corners. The maximum velocity in the test section is 70m/s and the contraction ratio is 6.25:1. Input power in the wind tunnel is about 96.1 kw (128.8 hp) and its energy ratio is 3.89. It has the dimension of about $7.4(W){\times}3.6(H){\times}21.7m(L)$. The wind tunnel designed in this investigation will be an effective educational and investigational equipment.

  • PDF

폐쇄형 시험부에서 케블라 덮개가 장착된 마이크로폰 어레이의 주파수 특성에 대한 실험적 연구 (An Experimental Study on Frequency Characteristics of the Microphone Array Covered with Kevlar in Closed Test Section Wind Tunnel)

  • 황은수;최영민;김양원;조태환
    • 한국소음진동공학회논문집
    • /
    • 제25권3호
    • /
    • pp.150-159
    • /
    • 2015
  • An experimental study on frequency characteristics of the microphone array covered with Kevlar sheet was conducted in the closed test section. Microphones that were flush-mounted in the wall of wind tunnel were subjected to very high flow noise resulting from the turbulence in the wall boundary layer. This noise interference by the boundary layer was referred as 'a microphone self-noise' and various approaches were studied to reduce this interference. Recessed microphone array with high tensioned cover was one of the good approaches to reduce this self-noise. But, the array cover could cause an unexpected interference to the measuring results. In this paper the frequency characteristics of the microphone array with Kevlar cover was experimentally studied. The white noise was used as a reference noise source. Three kinds of tensions for the Kevlar cover were tested and those results were compared with the test results without the Kevlar cover. The gap effect between the cover and microphone head was also tested to find out the proper position of microphone in the array module. Test results show that the mid-tension and 10mm gap was the best choice in the tested cases.

속도변화에 따른 점용접된 모자형단면부재의 에너지흡수 특성 (Energy Absorption Characteristics for Spot Welded Hat-shaped Section Members at Various Velocities)

  • 심재기;차천석;양인영
    • 한국공작기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.114-120
    • /
    • 2006
  • Front-end side members of vehicles are structures with the greatest energy absorbing capability in a front-end collision of vehicles. This paper was undertaken to analyze the energy absorption characteristics of spot welded hat and double hat-shaped section members under the axial collapse. The experiments were performed with respect to the various collapse velocities. It was expected that para-closed sections would show collapse characteristics which be quite different from those of perfectly closed sections. The collapse velocities were selected as follows: the velocities in the hat-shaped section members were 0.00017m/sec, 0.017m/sec, 4.7m/sec, 6.5m/sec, 6.8m/sec, 7.2m/sec, and 7.3m/sec those in the double hat-shaped section members were 0.00017m/sec, 0.017m/sec, 6.5m/sec, 6.8m/sec, 7.2m/sec 7.3m/sec, and 7.9m/sec. In the program system presented in this study, an explicit finite element code, LS-DYNA3D, is adopted for simulating complicated collapse behavior of the hat and double hat-shaped section members under the same condition of the collapse test. The validity of simulation was confirmed by the comparison between the simulation result and the collapse experiment.