• 제목/요약/키워드: Cloned pigs

검색결과 223건 처리시간 0.023초

Endocrine Profiles and Blood Chemistry Patterns of Cloned Miniature Pigs in the Post-Puberty Period

  • Lee, Sung-Lim
    • 한국수정란이식학회지
    • /
    • 제29권2호
    • /
    • pp.119-125
    • /
    • 2014
  • Although the majority of surviving pigs cloned by somatic cell nuclear transfer (SCNT) appear to be physiologically normal, there is a general lack of detailed hemato-physiologic studies for the period of early adulthood to substantiate this claim. In the present study, we investigated variation in blood chemistry and endocrinological parameters between mesenchymal stem cells (MSCs) derived from cloned and normal age-matched female and male miniature pigs. Cloned females and males showed normal ranges for complete blood count assessments. Biochemical assessments showed that ${\gamma}$-GGT, ALT and cholesterol levels of male and female clones were significantly (P<0.05 or P<0.01, respectively) higher than that of age-matched control miniature pigs. Variations in insulin and IGF-1 were higher in female clones than in male clones and controls. Thus, although female and male cloned miniature pigs may be physiologically similar to normal animals, or at least within normal ranges, a greater degree of physiological and endocrinological variation was found in cloned pigs. The above variation must be taken into account before considering cloned female or male miniature pigs for various biomedical applications.

Reproductive Efficiency and Characteristics of Cloned Miniature Piglets Produced from Domestic Commercial Gilts

  • You, Jin-Young;Jeon, Yu-Byeol;Hyun, Sang-Hwan;Park, Soo-Bong;Lee, Eun-Song
    • 한국수정란이식학회지
    • /
    • 제25권4호
    • /
    • pp.215-219
    • /
    • 2010
  • The objective of this study was to examine the reproductive characteristics of cloned miniature piglets produced from surrogate domestic pigs. Somatic cell nuclear transfer (SCNT) miniature pig embryos were transferred into domestic pigs. As controls, domestic pigs of the same breed with surrogates for SCNT embryos and miniature pigs of the same breed with the somatic cell donor were bred by artificial insemination and natural mating, respectively. Surrogate domestic pigs that farrowed cloned miniature piglets had a significantly longer gestation length (118.1 days) than conventionally bred domestic (115.4 days) and miniature (115.5 days) pigs. Furthermore, the birth weight of cloned miniature piglets produced from domestic pigs (743 g) was significantly greater than that of miniature piglets produced by natural breeding (623 g). Also, cloned miniature piglets had a significantly lower weaning rate (49.7%) than conventionally produced domestic (91.5%) and miniature (100%) piglets. No differences were observed between female and male cloned piglets in gestation length, litter size, birth weight, or weaning rate. Our results demonstrate that gestation length is extended in domestic pigs that are transferred with SCNT miniature pig embryos and that cloned miniature piglets have increased birth weight and high pre-weaning mortality.

Activation by Combined Treatment with Cycloheximide and Electrical Stimulation of In-Vitro Matured Porcine Oocytes Improves Subsequent Parthenogenetic Development

  • Naruse Kenji;Kim Hong-Rye;Shin Young-Min;Chang Suk-Min;Lee Hye-Ran;Tarte Vaishali;Quan Yan-Shi;Kim Beak-Chul;Park Tae-Young;Choi Su-Min;Park Chang-Sik;Jin Dong-Il
    • Reproductive and Developmental Biology
    • /
    • 제30권1호
    • /
    • pp.41-45
    • /
    • 2006
  • Electrical treatment has been widely used for porcine oocytes activation. However, developmental rates following electrical activation of porcine oocytes is relatively inefficient compared to other domestic animals. To investigate the effects of porcine oocytes on combined activation by both chemical and electrical treatment, in-vitro matured oocytes were activated by combined cycloheximide and electrical pulses treatment. Cumulus-free oocytes were exposed with NCSU-23 medium containing cycloheximide $(10{\mu}g/ml)$ for 0, 5, 10, 20, 30 min and then activated by electrical pulse treatment and cultured in PZM-3 for 8 days. Also effects of exposure to $6.25{\mu}M$ calcium ionophore for 2 min for cumulus-free oocytes were tested. The percentage of blastocyst formation in 10 min exposure to $10{\mu}g/ml$ cycloheximide and electrical pulse treatment was significantly increased (P<0.05) than in the control group. And exposure to $6.25{\mu}M$ calcium ionophore for 2 min with $10{\mu}g/ml$ cycloheximide for 10min and electrical pulse treatment significantly increased (P<0.05) the percentage of blastocyst developmental rates than the control group. In conclusion, activation by combined cycloheximide and electrical stimulation treatment promoted the subsequent development of porcine oocytes and improved the subsequence blastocyst development.

In Vitro Development of Interspecies Nuclear Transfer Embryos using Porcine Oocytes with Goat and Rabbit Somatic Cells

  • Quan, Yan Shi;Naruse, Kenji;Choi, Su-Min;Kim, Myung-Youn;Han, Rong-Xun;Park, Chang-Sik;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • 제32권4호
    • /
    • pp.249-253
    • /
    • 2008
  • Interspecies somatic cell nuclear transfer (iSCNT) is a valuable tool for studying the interactions between an oocyte and somatic nucleus. The object of this study was to investigate the developmental competence of in vitro-matured porcine oocytes after transfer of the somatic cell nuclei of 2 different species (goat and rabbit). Porcine cumulus oocytes were obtained from the follicles of ovaries and matured in TCM-199. The reconstructed embryos were electrically fused with 2 DC pulses of 1.1kV/cm for $30{\mu}s$ 0.3M mannitol medium. The activated cloned embryos were cultured in porcine zygote medium-3 (PZM-3), mSOF or RDH medium for 7 days. The blastocyst formation rate of the embryos reconstructed from goat or rabbit fetal fibroblasts was significantly lower than that of the embryos reconstructed from porcine fetal fibroblast cells. However, a significantly higher number of embryos reconstructed from goat or rabbit fetal fibroblasts cultured in mSOF or RDH, respectively, developed to the morular stage than those cultured in PZM-3. These results suggest that goat and bovine fetal fibroblasts were less efficacious than porcine-porcine cloned embryos and that culture condition could be an important factor in iSCNT. The lower developmental potential of goat-porcine and porcine-bovine cloned embryos may be due to incompatibility between the porcine oocyte cytoplasm and goat and bovine somatic nuclei.

Effects of Cryoprotectant, Warming Solution and Removal of Lipid on Viability of Porcine Nuclear Transfer Embryos Vitrified by Open Pulled Straw Method

  • Cong, Pei-Qing;Song, Eun-Sook;Kim, Eui-Sook;Li, Zhao-Hua;Zhang, Yong-Hua;Lee, Jang-Mi;Yi, Young-Joo;Park, Chang-Sik
    • Reproductive and Developmental Biology
    • /
    • 제31권2호
    • /
    • pp.103-108
    • /
    • 2007
  • This study was carried out to investigate the effects of cryoprotectants, warming solution and removal of lipid on open pulled straw vitrification (OPS) method of porcine embryos produced by nuclear transfer (NT) of fetal fibroblasts. All solutions used during vitrification were prepared with holding medium consisting of 25 mM Hepes buffered TCM199 medium containing 20% fetal bovine serum (FBS) at $38.5^{\circ}C$. The blastocysts derived from NT with or without lipid were vitrified in each medium of different concentrations of dimethyl sulfoxide (DMSO) and ethylene glycol (EG). Also, blastocysts after cryopreservation were warmed into different concentrations of sucrose in warming solution. The optimal concentrations of cryoprotectants in vitrification solution were 10% DMSO + 10% EG in vitrification solution 1 (VS1) and 20% DMSO + 20% EG in vitrification solution 2 (VS2). The optimal concentrations of sucrose were 0.3 M sucrose in warming solution 1 (WS1) and 0.15 M sucrose in warming solution 2 (WS2). lipid removal from oocytes before NT enhanced the viability of NT embryos after vitrification. Our results show that use of the OPS method in conjunction with lipid removal provides effective cryopreservation of porcine nuclear transfer embryos.