• Title/Summary/Keyword: Clinkers

Search Result 39, Processing Time 0.028 seconds

Quantitative Analysis of Rietveld Method Minerals by Sintering Temperature of Cement Clinkers with Fly Ash (리트벨트법에 의한 석탄재를 적용한 시멘트 클링커의 소성 온도별 광물 정량분석)

  • Yoo, Dong-Woo;Im, Young-Jin;Park, Tae-Gyun;Lee, Chang-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.514-519
    • /
    • 2020
  • In this study, cement clinkers were sintered at each temperature by replacing some of the clay components of cement clinkers with coal materials. The mineral phase change of sintered cement clinker was quantitatively analyzed by XRD-Rietveld method. As the sintering temperature of cement clinker increased, the amount of belite decreased, the amount of alite increased, and the amount of free-CaO decreased. The form of alite and belite could be distinguished at sintering temperature of 1450℃ or higher. The crystal size was greatly increased at 1500℃ sintering. It was confirmed that the excessive sintering was progressed. Free-CaO decreased with the increase of sintering temperature. At 1450 ℃ or higher, it was less than 0.5%. In 1450℃ or greater, it is determined that enough sintering is included. Therefore, the application of fly ash as a raw material of cement clinker was judged to be usable as a source of chemical components of alumina and iron raw materials.

Studies on structural interaction and performance of cement composite using Molecular Dynamics

  • Sindu, B.S.;Alex, Aleena;Sasmal, Saptarshi
    • Advances in Computational Design
    • /
    • v.3 no.2
    • /
    • pp.147-163
    • /
    • 2018
  • Cementitious composites are multiphase heterogeneous materials with distinct dissimilarity in strength under compression and tension (high under compression and very low under tension). At macro scale, the phenomenon can be well-explained as the material contains physical heterogeneity and pores. But, it is interesting to note that this dissimilarity initiates at molecular level where there is no heterogeneity. In this regard, molecular dynamics based computational investigations are carried out on cement clinkers and calcium silicate hydrate (C-S-H) under tension and compression to trace out the origin of dissimilarity. In the study, effect of strain rate, size of computational volume and presence of un-structured atoms on the obtained response is also investigated. It is identified that certain type of molecular interactions and the molecular structural parameters are responsible for causing the dissimilarity in behavior. Hence, the judiciously modified or tailored molecular structure would not only be able to reduce the extent of dissimilarity, it would also be capable of incorporating the desired properties in heterogeneous composites. The findings of this study would facilitate to take step to scientifically alter the structure of cementitious composites to attain the desired mechanical properties.

Corrosion Behavior of Dolomite Clinkers by Molten Steel (용강에 의한 돌로마이트 클링커의 침식거동)

  • 박재원;홍기곤
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1301-1307
    • /
    • 1998
  • For dolomite clinkers used as stamp materials the corrosion behavior of those by molten steel was investigated in therange of temperatures between 1550$^{\circ}C$ and 1600$^{\circ}C$ IN hot face the dicalciumferrite of magnesioferrite and dicalciumferrite formed within dolomite clinkers was preferentially dissolved into molten steel and the protective layer of magnesioferrite was formed. For dolomite clinker without Fe2O3 magnesioferrite maintained the skeleton of MgO while the skeleton of CaO disappered bythe formation of dicalciumferrite and it existed as grain boundary phases of magnesioferrite. For dolomite clinker with Fe2O3 was diffused into hot face by the decomposition of dicalciumferrite. With increasing temperature of molten steel the formation depth of dicalciumferrite was increased and the magnesioferrite layer in hot face was decreased for dolomite clinker without Fe2O3 while the layer thickness and grain sizes of magnesioferrite in hot face was decreased for dolomite clinker without Fe2O3 while the layer thickness an grain sizes of magnesioferrite in hot face was increased due to the increment of the decomposition reaction of dicalciumferrite for dolomite clinker with Fe2O3.

  • PDF

Portland-Blended Cement with Reduced CO2 using Trass Pozzolan (화산회 가루를 사용함에 의한 CO2-저방출 포트랜드-혼합 시멘트 제조)

  • Manaf, A.;Indrawati, V.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.490-494
    • /
    • 2011
  • This paper reports the use of supplementary cementing materials (SCMs) derived from local resources, for the partial replacement of Portland cement to reduce $CO_2$ emission during cement production. Replacement of Portland clinkers up to 20 wt.% with SCMs in normal cements reduced $CO_2$ emission by 0.18 kg $CO_2$/kg. The compressive strength exceeded the standard specification for Portland cement ASTM C-150. Blended cement samples containing 20% Portland clinker replacement had compressive strengths of 37 MPa after 28 days of curing time. The microstructure evolution of blended cement at a composition of 80:20 was similar to that of the 100% Portland cement, where the structure between days 28 and 56 reached a steady state. Blended cements with compositions of 70:30 and 60:40 still showed progress of CSH plate formation and the lack of massive structure development. It is shown that the use of supplementary cementing materials could be as one of alternative ways to reduce $CO_2$ emissions during cement production.

Study on the Synthesis of Tricalcium Aluminate Clinker from Waste Shell and Spent Oil-Refining Catalyst (폐 패각과 정유 폐촉매를 사용한 Tricalcium Aluminate 클링커의 합성에 관한 연구)

  • Lee, Keon-Ho;Song, Tae-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.12 s.271
    • /
    • pp.933-938
    • /
    • 2004
  • The clinkerbility and the behaviour of formation of $3CaO{\cdot}Al_{2}O_3$ were studied using the mixture of waste oyster shell and spent oil-refining catalyst mainly by the mineral and microstructural observation. By virtue of the formation of $12CaO{\cdot}7Al_{2}O_3$ at relatively low temperature and its successive reaction with CaO, the $3CaO{\cdot}Al_{2}O_3$ clinkers were formed easily without affection of minor constituents contained in oyster shell. Thus clinkers were formed at $1400^{\circ}C$ directly but began to melt incongruently at higher temperature above that. Aluminium hydroxide, however, was not desirable as an aluminous raw materials of the clinker because rapid melting occurs before $3CaO{\cdot}Al_{2}O_3$ forms main clinker mineral.

Premature Stiffening of Cement Paste Associated with AFm Formation

  • Chung, Chul-Woo;Lee, Jae-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.1
    • /
    • pp.83-90
    • /
    • 2011
  • The purpose of this research is to investigate the effect of AFm formation on the stiffening process of cement paste. High and low alkali sulfate clinkers were used for the experiments. The flow and stiffening behavior of cement paste was investigated using modified ASTM C403 penetration resistance test and oscillatory shear rheology. X-ray powder diffraction (XRD) was used for phase identification associated with stiffening of the paste. It was found from the results that low alkali clinker mixture produced very strong premature stiffening whereas high alkali clinker mixture did not cause premature stiffening. This is because of the large amount of alkali sulfate present in the clinker. Addition of calcium and sodium chloride to the high alkali clinker mixture caused faster stiffening and set.

Effect of Impurities Included in the Domestic Waste Phosphogypsum on Hydration of Portland Cement (국산 인산석고에 함유된 불순물들이 Portland Cement의 수경성에 미치는 영향)

  • 인식환;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.4
    • /
    • pp.237-246
    • /
    • 1981
  • The effects of impurities, included in the by-produced phosphogypsum from the dihydrate process, on the hydration of portland cement were studied. Six gypsums were adopted in this study; four different raw phosphogypsums from domestic fertilizer plants, a reprocessed phosphogypsum and a reagent grade pure gypsum. Cements with differing $SO_3$ content, were synthesized by grinding two different commercial clinkers and the above six gypsums together. The effects of the impurities were investigated by measuring the setting time, the non-evaporable water coatent, X-ray phase analysis of cement pastes and the compressive strength of cement mortar specimens. It was found that the soluble $P_2O_5$ known as one of injurious impurities on the hydration of portland cement, included in the demestic raw phosghoypsum cxneedigply by far the specified amounts of the Korean Industrial Standards (L9005), and retarded the setting time severely, thus the strength development of cement was delayed at the earlier stage of hydration.

  • PDF

Hardening Properties of Activated Calcium Dialuminate Clinker with Phosphoric Acid Solution

  • Song, Tae-Woong;Kim, Sei-Gi
    • The Korean Journal of Ceramics
    • /
    • v.3 no.4
    • /
    • pp.235-238
    • /
    • 1997
  • Basic properties of new cement pastes based on the system $CaO-Al_2O_3-P_O_5-H_2O$were studied Phosphoric acid solutions and calcium dialuminate clinkers synthesized by the hydration-burning method were used for liquid and powder components of the paste, respectively Variation in the compositions of the paste was achieved by changing the liquid/powder ratio and the concentration of phosphoric acid solution. The hardening rate of the paste was so largely affected by the amount of phosphoric acid that hardening was inhibited with the low-concentrated solution but was explosively accelerated with the high-concentrated solution. The phosphoric acid solutions of concentration of 45~50% and the liquid/powder ratio of 0.5~1.5 were favoured for the high early-strength cement paste with the reasonable hardening rate and high strength. The binding phase of hardened paste was the dense amorphous gel of the system $CaO-Al_2O_3-P_O_5-H_2O$. in which the unreacted calcium dialuminate grains were embeded.

  • PDF

Hydration of Active-Belite Cement with Gypsum and Slag (석고와 슬래그를 첨가한 Active-Belite Cement의 수화특성)

  • 이성호;박동철;김남호;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.4
    • /
    • pp.339-346
    • /
    • 1998
  • Active belite cement clinkers were synthsized by using natural raw materials with borax and calcium phosphate ({{{{ {Ca }_{3 }( {PO}_{4}) }}2) In both case {{{{alpha ^、 {C }_{2 }S }} were formed but borax was more efficient. The cement syn-thesized with the addition of borax was hydrated with the addition of anhydrite(5 wt%) and slag(30wt%, 40wt% 50wt%) The addition of 50wt% slag with anhydrite was good for strength development in 7days and the compressive strength was developed to twice than no addition of slag at 28 days strength.

  • PDF

Mineralogical Analysis of Calcium Silicate Cement according to the Mixing Rate of Waste Concrete Powder (폐콘크리트 미분말 치환율에 따른 이산화탄소 반응경화 시멘트의 광물상 분석)

  • Lee, Hyang-Sun;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.181-191
    • /
    • 2024
  • In the realm of cement manufacturing, concerted efforts are underway to mitigate the emission of greenhouse gases. A significant portion, approximately 60%, of these emissions during the cement clinker sintering process is attributed to the decarbonation of limestone, which serves as a fundamental ingredient in cement production. Prompted by these environmental concerns, there is an active pursuit of alternative technologies and admixtures for cement that can substitute for limestone. Concurrently, initiatives are being explored to harness technology within the cement industry for the capture of carbon dioxide from industrial emissions, facilitating its conversion into carbonate minerals via chemical processes. Parallel to these technological advances, economic growth has precipitated a surge in construction activities, culminating in a steady escalation of construction waste, notably waste concrete. This study is anchored in the innovative production of calcium silicate cement clinkers, utilizing finely powdered waste concrete, followed by a thorough analysis of their mineral phases. Through X-ray diffraction(XRD) analysis, it was observed that increasing the substitution level of waste concrete powder and the molar ratio of SiO2 to (CaO+SiO2) leads to a decrease in Belite and γ-Belite, whereas minerals associated with carbonation, such as wollastonite and rankinite, exhibited an upsurge. Furthermore, the formation of gehlenite in cement clinkers, especially at higher substitution levels of waste concrete powder and the aforementioned molar ratio, is attributed to a synthetic reaction with Al2O3 present in the waste concrete powder. Analysis of free-CaO content revealed a decrement with increasing substitution rate of waste concrete powder and the molar ratio of SiO2/(CaO+SiO2). The outcomes of this study substantiate the viability of fabricating calcium silicate cement clinkers employing waste concrete powder.