• Title/Summary/Keyword: Clinker modulus

Search Result 13, Processing Time 0.03 seconds

A Study on the Characteristics of Clinker and Cement as Chlorine Content (염소 함량에 따른 클링커 및 시멘트의 물성에 관한 연구)

  • Lee, Young-Jun;Kim, Nam-Il;Cho, Jeong-Hoon;Seo, Sung-Kwan;Chu, Yong-Sik
    • Resources Recycling
    • /
    • v.30 no.5
    • /
    • pp.10-16
    • /
    • 2021
  • In this study, a clinker was prepared using raw materials with CaCl2. The characteristics of the chlorine-added clinker and cement were analyzed. The clinker modulus were set to Lime Saturation Factor (LSF) 92, Silica modulus (SM) 2.5, and Iron Modulus (IM) 1.5. The physical properties of cement using the chlorine-containing clinker were characterized. As the chlorine content increased, the free-CaO content in the clinker decreased, and that in the 2000 ppm clinker was reduced by approximately 40% compared to that in the 0 ppm clinker. There was an increase in the amount of chlormayenite, with a content of up to 3.4% present in the 2000 ppm clinker. The amounts of alite and belite also slightly increased. The compressive strength of mortar at 3 days and 7 days increased as the chlorine content increased. This trend was presumed to arise from the effect of hydration, which was promoted by the presence of chlorine. The compressive strength of 1000 ppm mortar increased by approximately 20% compared to that of 0 ppm mortar.

Mineral Properties of Molten Clinker with Blast Furnace Slag (고로 슬래그를 사용한 용융클링커의 광물학적 특성)

  • Chu, Yong-Sik;Seo, Sung-Kwan;Im, Du-Hyuk;Song, Hun;Lee, Jong-Kyu;Lee, Seung-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.589-594
    • /
    • 2011
  • Raw mix of molten clinker was fabricated using blast furnace slag as starting material. Raw mix was melted at 1620$^{\circ}C$ for molten clinker fabrication. It was found that molten clinker contained alite and belite equivalent to OPC clinker mineral by optical microscope and SEM. The size of alite was 10~50 ${\mu}m$ and that of belite was 20~80 ${\mu}m$. This result thought to be attributed low $Al_2O_3$ content and cooling condition. Interstitial phase increased with blast furnace slag content and gehlenite was formed by the condition of LSF and SM. So raw mix with 27~41% blast furnace slag could be converted into cement clinker by appropriate choice of melting andcooling methods in this study.

Leaching Properties of Water-Soluble Hexavalent Chromium in Manufacturing Cement Clinker Using Industrial By-Products (산업부산물을 이용하여 제조된 시멘트 클링커의 수용성 6가 크롬 용출 특성)

  • Lee, Jung-Hui;Chu, Yong-Sik;Song, Hoon;Lee, Jong-Kyu
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.181-186
    • /
    • 2010
  • Since it was developed by Joseph Aspdin, cement has been a common construction materials up to the present time. However, there are trace constituents in cement clinker. One of the trace constituents included in cement clinker, chromium, has become prominent and highly noticed lately as a social issue both inside and outside of this country because it affects the human body negatively. The aim of the present study was to investigate the concentration of water-soluble hexavalent chromium in cement clinker by using industrial by-products. For that reason, raw materials were prepared to add different $SiO_2$, $Al_2O_3$, and $Fe_2O_3$ sources. After the raw materials such as the limestone, the sand and the clay, iron ore was pulverized and mixed, and the raw meal was burnt at about $1450^{\circ}C$ in a furnace with an oxidizing atmosphere. The part in the raw materials of the clinker was substituted with slag, sludge, etc. and this was used to manufacturing cement clinker. To investigate the water-soluble hexavalent chromium content in clinker, raw meal was prepared by changing the modulus, the type, and the content of clinker materials and tested concentrations of hexavalent chromium in the clinkers. To determine $Cr^{+6}$ formation of the clinker, tests were done with raw meals adding chromium by using different industrial by-products. Consequently because the chromium was to be included in the raw materials of the clinker, production of Portland cement clinker was included with the chromium. Also, the chromium was converted into hexavalent chromium in the burning process.

Burnability and Mineral Properties of Clinker Added Chlorine (염소 함유 클링커의 소성성 및 광물특성에 관한 연구)

  • Kim, Tae-Yeon;Kim, Nam-Il;Chu, Yong-Sik
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.48-56
    • /
    • 2020
  • In this study, raw mix was mixed with CaCl2 for analyzing characteristics of clinker added chlorine and chlorine was added by 2,000ppm at high concentration condition. The raw mix added chlorine was burned at 1250℃~1350℃ and maintained during 10minutes at each maximum temperature. Clinker target modulus was LSF 92, SM 2.5 and IM 1.6 in this study. The burnability of clinker added chlorine was identified by free-CaO content. Free-CaO content decreased as chlorine content increased and free-CaO content of 1350℃-2000ppm clinker decreased by 1.5%. Optical microscope and XRD Analyses were used for identify mineral properties of clinker added chlorine. The mineral of clinker could not be observed at 1250℃ and the size of alite grew larger as chlorine content increased at 1350℃. It showed a good crystallizability as chlorine content increased. As chlorine content of clinker increased, clinker showed a good burnability and mineral property.

A Study on the Characteristics of Chlorine-Containg Cement Depending on Changes in Gypsum and Iron Modulus (이수석고 함량과 Iron Modulus 변화에 따른 염소 함유 시멘트의 특성에 관한 연구)

  • Lee, Young-Jun;Kim, Nam-Il;Cho, Jeong-Hoon;Seo, Sung-Kwan;Chu, Yong-Sik
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.53-60
    • /
    • 2022
  • The physical properties of chlorine-containing cement were analyzed to optimize the operational conditions when waste resources containing chlorine were used in the cement manufacturing process. Cement with clinker to gypsum weight ratios of 95:5 and 93:7 were manufactured. In addition, the iron modulus (IM) of clinker was set to 1.3, 1.5, and 1.7 to evaluate the burnability and physical properties of clinker. With constant chlorine content, increasing gypsum content resulted in a decrease in the 3 day-compressive strength, whereas the 28 day-compressive strength increased. In addition, flow and setting time also increased with increasing gypsum content. As the IM decreased, burnability was improved, free-CaO content decreased, alite and ferrite content increased, and compressive strength increased In particular, the compressive strength of IM 1.3 was approximately 14% greater than that of IM 1.7.

Leaching Properties of Water-Soluble Hexavalent Chromium by Manufacturing Condition of Cement Clinker (클링커 제조 조건에 따른 수용성 6가 크롬 용출 특성)

  • Lee, Jong-Kyu;Chu, Yong-Sik;Song, Hun
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.679-684
    • /
    • 2011
  • One of the trace constituents included in cement clinker, chromium, has become prominent and highly noticed lately as a social issue both inside and outside of this country because it affects the human body negatively. The purpose of the present study was to investigate leaching properties of water-soluble hexavalent chromium by different manufacturing conditions of cement clinker. Raw materials were prepared to add different $SiO_2$, $Al_2O_3$ and $Fe_2O_3$ sources. After the raw materials, such as limestone, sand and clay, iron ore was pulverized and mixed, and the raw meal was burnt at $1450^{\circ}C$ in a furnace with an oxidizing atmosphere. Leaching of soluble hexavalent chromium showed a tendency to decrease with an increasing LSF and IM. However, leaching of soluble hexavalent chromium increased with an increasing S.M. Alkali contents of iron source minerals is closely related to the leaching properties of soluble hexavalent chromium. Green sludge has the highest content of alkali added; leaching of water-soluble hexavalent chromium was mostly high. In order to reduce the water-soluble hexavalent chromium in cement, reducing the alkali content in raw materials is important.

Manufacture of Ordinary Portland Cement Clinker Using Cement Paste of the Waste Concrete (폐콘크리트로부터 회수된 시멘트 페이스트 미분말의 시멘트 원료화 연구)

  • Ahn, Ji-Whan;Kim, Hyung-Seok;Cho, Jin-,Sang;Han, Gi-Chun;Han, Ki-Suk;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.804-810
    • /
    • 2003
  • The fine powder produced by heating and grinding of the waste concrete in the waste construction was investigated whether utilize as substitution raw material of SiO$_2$, CaO, and Al$_2$O$_3$ source for OPC clinker manufacture is possible or not. In order to synthesize OPC clinker, limestone, shale, converter slag and fly ash were used as main raw materials, and modulus was fixed LSF 91.0, SM 2.60, IM 1.60. The synthesized clinkers were characterized. The Main products of synthesized clinker were C$_3$S, ${\beta}$-C$_2$S, C$_3$A, C$_4$AF as OPC clinker at 1,43$^{\circ}C$. As a result of TG-DTA and burnability index(B.U) analysis of each raw mixtures, the formation temperature of clinker phases was similar and B.I was showed easy burning as 48.6∼51.4.

A Study on the Flexural Behavior of Concrete Using Non-burnt Cement (비소성 시멘트 콘크리트의 휨 거동에 관한 연구)

  • Yoo, S.W.;Nam, E.Y.;Lee, S.J.;Hwang, S.B.;Soh, Y.S.;Kim, J.S.
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.49-56
    • /
    • 2012
  • If cement can be manufactured with industrial byproducts such as granulated blast furnace slag, phosphogypsum, and waste lime instead of clinker, there would be many advantages, including maximum use of these industrial byproducts for high value-added resources, conservation of natural resources and energy by omitting the use of clinker, minimized environmental pollution problems caused by CO2 discharge, and reduction of the production cost. By this reason, in this study, mechanical behavior tests of non-burnt cement concrete were performed, and elasticity modulus and stress-strain relationship of non-burnt cement concrete were proposed. 6 test members were manufactured and tested according to reinforcement ratio and concrete compressive strength. By the test results, there was no difference between ordinary concrete and non-burnt cement concrete of flexural behavior. In order to verify the proposed non-burnt cement concrete model, nonlinear analytical model was derived by using strain compatibility method. By the results of comparison between test results, ordinary concrete model and proposed model, The proposed model well predicted the flexural behavior of non-burnt cement concrete.