• 제목/요약/키워드: Clinker

검색결과 276건 처리시간 0.028초

냉각속도의 변화에 따른 벨라이트의 특성 (Properties of Belite with Cooling Rate)

  • 김진호;박현
    • 한국세라믹학회지
    • /
    • 제38권1호
    • /
    • pp.68-73
    • /
    • 2001
  • Active belite cement clinker 합성을 위하여 안정제로 borax (3 wt%)를 사용하였으며, 1300, 1350, 140$0^{\circ}C$에서 소성하고, 각각의 소성온도에서 아세톤 급냉, 공냉, 로냉의 3가지 방법으로 냉각속도를 달리하여 합성하였다. 클링커의 특성분석은 TG-DTA, XRD, FT-IR, SEM-EDS로 조사 분석하였으며, free-CaO 함량은 KSL 5120의 ethylene glycol법으로 정량하였다. Borax(3 wt%)를 첨가한 시료의 시차열분석에서 ${\gamma}$상으로의 전이는 관찰되지 않았으며, 각각의 소성온도와 냉각속도에 따른 free-CaO 분석에서 0.07~0.14%의 범위로 낮게 나타났으며, borax가 첨가되지 않은 시료는 140$0^{\circ}C$에서 소성하고 급냉시켰지만 ${\gamma}$상으로 전이되어 dusting 현상을 나타내었다. Borax(3 wt%) 첨가된 시료의 SEM 미세구조는 140$0^{\circ}C$에서 소성하고 급냉시켰지만 ${\gamma}$상으로 전이되어 dusting 현상을 나타내었다. Borax(3 wt%) 첨가된 시료의 SEM 미세구조는 140$0^{\circ}C$에서 소성된 모든 시료와 135$0^{\circ}C$에서 소성하고 급냉과 공냉시킨 시료는 type I belite, type III belite($\alpha$상) 구조를 나타낸다. 135$0^{\circ}C$에서 소성하고 로냉한 시료와 130$0^{\circ}C$에서 소성된 모든 시료는 type II belite($\beta$상) 구조를 나타내었다.

  • PDF

표면마감 조건에 따른 탄산화감소계수 및 CO2 흡수량 산정 (Analysis of Carbonation Reduction Coefficient and CO2 uptakes under Finishing Materials)

  • 송훈;신현욱;추용식;이종규;조형규;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.215-216
    • /
    • 2012
  • Emissions of CO2 occur during the production of cement manufacturing process. During the production of clinker, limestone is mainly calcium carbonate, is heated to produce lime and CO2 as a by-product. It has a major problem, CO2 uptake is not considered in concrete carbonation, just focus in CO2 emission. This study is to develop a simulation model for CO2 uptakes in concrete structures based on carbonation reduction coefficient considering finishing materials. CO2 uptakes unit of concrete cubic meter is calculated by CO2 emissions unit of concrete materials and usage of concrete materials in mix proportion. From the simulation result, CO2 uptake ratios is 2.04 percent in carbonation models of concrete structure during 40 years.

  • PDF

X-Ray Diffraction과 X-Ray Fluorescence를 이용한 시멘트 비교 분석 (The analytical application for cement using X-Ray diffraction and X-Ray fluorescence spectrometer)

  • 정지은;장유림;김기욱;허상철;민지숙
    • 분석과학
    • /
    • 제26권5호
    • /
    • pp.340-351
    • /
    • 2013
  • The chemical element and structural characterization of different types of cements and its brick stones are been investigated under forensic aspects using X-ray florescence (XRF) and X-ray diffraction (XRD) spectrometer. The XRF provides rapid compositional data for controlling almost all stages of raw materials, clinker and cement. The decisive advantage of XRD methods is based on the unique character of the diffraction patterns of crystalline substances, the ability to distinguish between elements and their oxides, and the possibility to identify chemical compounds, polymeric forms, and mixed crystals by non-destructive examination. Therefore, combination of these examinations is useful and able to apply for the forensic analysis in comparison of cements and brick stones. There are more study remained to determine the viability of method for forensic analysis of brick stones and the limits of the discrimination that can be achieved.

시멘트 유동성과 물성에 미치는 영향인자에 관한 연구 (A Study of Effecting Factor in the Reology and Physical Properties of Cements)

  • 엄태선;최상흘
    • 한국세라믹학회지
    • /
    • 제34권10호
    • /
    • pp.1027-1036
    • /
    • 1997
  • The reology and several physical properties of cements are studied by varying the different mineral composition and particle size distribution(PSD) of cements with closed circuit ball mill for high workability, low heat of hydration, and high strength. In this study, we found that the workability of concretes is related to the viscosity of cement, and affects to strength. Here, this workability is affected by mineral composition (C3A) and the PSD. Especially, rosin-rammer index and 44${\mu}{\textrm}{m}$ residue in the PSD of cements are affected to water demand, casting property, slump loss, strength of cements. From the above results, the conditions of cement for high workability, low heat of hydration and high strength are to use low C3A clinker, 5-10% slag addition, and to grind cement below 0.7 rosin-rammer index, above 3.5-4.5% 44 ${\mu}{\textrm}{m}$ residue, 4000$\pm$100 $\textrm{cm}^2$/g blaine. Such cements are, therefore, supurior to super low heat cement and slag-blended cement in comparing the physical properties of strength, slump, slump-flow, adiabetic temperature, etc.

  • PDF

음향방출 센서를 이용한 히트맵기반 순환유동층 보일러 튜브 누설 위치 추정 알고리즘 (A Heatmap-based Leakage Location Estimation Algorithm for Circulating Fluidized Bed Boiler Tube Using Acoustic Emission Sensors)

  • 김재영;김종면
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제58차 하계학술대회논문집 26권2호
    • /
    • pp.51-52
    • /
    • 2018
  • 화력발전용 순환유동층 보일러는 환경오염의 주요인인 질소산화물(NOx)과 황산화물(SOx)의 배출량이 적은 친환경 화력발전용 보일러로 화력발전 업계에서 각광받고 있는 추세이다. 그러나 순환유동층 보일러의 연료인 유동매체는 미분탄과 같이 작지만 단단한 고체이므로 유동매체의 타격으로 인해 워터월(waterwall) 튜브의 마모는 물론 누설까지 야기할 수 있다. 순환유동층 보일러 튜브에서 누설된 증기는 보일러 내부에 클링커(Clinker)를 발생시키고 이는 순환유동층 보일러 튜브 표면에 응고되어 열전도율을 감소시킬 뿐만 아니라 보일러 운전정지의 원인이 된다. 따라서 본 논문에서는 음향방출 센서를 이용하여 화력발전용 순환유동층 보일러 튜브의 누설 위치를 추정하는 방법을 제안한다. 제안 방법에서는 매질의 분자단위 이동에 의해 발생되는 탄성파를 감지할 수 있는 음향방출 센서를 이용하고, 보일러 워터월 튜브의 멤브레인 용접부와 비용접부(seamless)의 감쇠율을 고려한 위치별 센서 감도 추정 알고리즘을 통해 워터월 튜브의 위치별 진폭 크기를 히트맵으로 표현할 수 있다.

  • PDF

고온정밀주조용 인산염계 매몰재에 관한 연구(I);매몰재의 특성에 미치는 규사의 입도와 입도분포의 영향 (Study on Phosphate Investment for High Temperature Precision Castings(I);The Effect of Particle size and Distribution of Silica Sand on the characteristics of the Investment)

  • 안지홍;이종남
    • 한국주조공학회지
    • /
    • 제5권2호
    • /
    • pp.85-96
    • /
    • 1985
  • In order to investigate the effect of particle size and distribution of silica sand on the characteristics of investment, W/P ratio, setting time, temperature change during setting, setting expansion, thermal expansion and compressive strength of the investments were measured. In this experiment, magnesia clinker and mono ammonium phosphate were used as binder, and particle size and distribution of silica sand were classified for convinence into 10 categories. The main results obtained from this investigation were summerized as follows. 1. W/P ratio decreased with increase of particle size and evenness in distribution of sand grain. 2. Setting time decreased with increase of evenness in distribution of sand grain, and temperature during setting increased with evenness in distribution of sand grain. 3. Setting expansion decreased with increase of particle size, while it increased with evenness in distribution of sand grain. 4. Thermal expansion decreased with increase of particle size. 5. Compressive strength increased with increase of particle size and evenness in distribution of sand grain. From above results, G.F.N. 250 sand which contains 30% of 50-100 mesh could be recommended for investment casting.

  • PDF

$3CaO.SiO_2$ 생성반응과 미세조직에 있어서 Alkali Oxide와 $SO_3$의 상호작용 (Interaction of Alkali Oxide and $SO_3$ on $3CaO.SiO_2$ Formation and Microstructure)

  • 정해문;최상흘
    • 한국세라믹학회지
    • /
    • 제30권12호
    • /
    • pp.1071-1079
    • /
    • 1993
  • Interaction of alkali oxides and SO3 and C3S formation and microstructure was studied using K2CO3 and Na2CO3 as alkali sources and (NH4)2SO4 for SO3. When SO3/K2O=1.43 as mole ratio, K2O and SO3 react to form K2SO4, this phase is immiscible with other oxide melt and thus could not affect C3S formation as well as its microstructure. In a condition of SO3/K2O 1, C3S crystals were round and grown in a much larger size. With addition of Na2O and SO3 by only 1wt% each, C3S formation was strongly hindered. Since C2S was stabilized by Na+ and SO4-2, it could not react to give C3S formation. However in the condition of SO3/Na2O=1.43, a little amount of C3S was formed. It is considered that small amount of Na2SO4 was formed, this phase was immiscible with clinker liquid, and the C3S crystals were formed locally in the liquid part of relatively low Na2O and SO3 compositions. These crystals had irregular and rough surfaces and contained more inclusions than those grown from K2O.SO3 system.

  • PDF

마그네시아와 돌로마이트의 특성에 미치는 $Fe_2O_3$ 의 첨가영향 (Effects of $Fe_2O_3$ Addition on the Properties of MgO and Dolomite)

  • 박재원;홍기곤
    • 한국세라믹학회지
    • /
    • 제34권7호
    • /
    • pp.738-746
    • /
    • 1997
  • MgO clinker and two kinds of dolomite clinkers with different microstructures and CaO contents were used as starting materials, and the effects of Fe2O3 addition on the properties of MgO and dolomite were investigated in the range of 2 to 8 wt% of Fe2O3 content. Secondary phases contributed to densification of MgO-Fe2O3 and dolomite-Fe2O3 were magnesioferrite and dicalciumferrite, respectively. Sinterabilities of MgO-Fe2O3 and dolomite-Fe2O3 were directly proportional to the amount of secondary phases. Also, sinterability of dolomite itself was dependent on the microstructure of starting material including distribution of CaO and MgO as well as the addition amount of Fe2O3. The flexural strength of MgO-Fe2O3 content was almost constant. The hydration resistance of dolomite with large size of MgO and discontinuous distribution of CaO was higher than that of dolomite with small size of MgO and continuous distribution of CaO. Also, the minimum content of Fe2O3 to prevent they hydration of dolomite was about 4wt%. As increasing Fe2O3 content, the penetration resistance of MgO-Fe2O3 was improved by the increment of magnesioferrite. On the other hand, the penetration resistance of dolomite-Fe2O3 was decreased because of the increment of dicalciumferrite having low melting point.

  • PDF

Investigation of Cement Matrix Compositions of Nanosilica Blended Concrete

  • Kim, Jung Joong;Moon, Jiho;Youm, Kwang-Soo;Lee, Hak-Eun;Lim, Nam-Hyoung
    • International Journal of Railway
    • /
    • 제7권3호
    • /
    • pp.85-89
    • /
    • 2014
  • The use of pozzolanic materials in concrete mixtures can enhance the mechanical properties and durability of concrete. By reactions with pozzolanic materials and calcium hydroxide in cement matrix, calcium-silicate-hydrate (C-S-H) increases and calcium hydroxide decreases in cement matrix of concrete. Consequently, the volume of solid materials increases. The pozzolanic particles also fill spaces between clinker grains, thereby resulting in a denser cement matrix and interfacial transition zone between cement matrix and aggregates; this lowers the permeability and increases the compressive strength of concrete. Moreover, the total contents of alkali in concrete are reduced by replacing cements with pozzolanic materials; this prevents cracks due to alkali-aggregate reaction (AAR). In this study, nanosilica is incorporated in cement pastes. The differences of microstructural compositions between the hydrated cements with and without nanosilica are examined using nanoindentation, XRDA and $^{29}Si$ MAS NMR. The results can be used for a basic research to enhance durability of concrete slab tracks and concrete railway sleepers.

The property of inorganic insulation material depending on CSA contents and atmospheric steam curing condition

  • Kim, Tae-Yeon;Chu, Yong-Sik;Seo, Sung-Kwan;Yoon, Seog-Young
    • Journal of Ceramic Processing Research
    • /
    • 제19권5호
    • /
    • pp.407-412
    • /
    • 2018
  • In this study, we have made a cement based inorganic insulation material and added CSA (Hauyne Clinker) to reduce the demolding time and enhance the handling workability. CSA contents were varied by 0%, 1%, 3%, 5% and the atmospheric steam curing was tried for enhancing the compressive strength. As the CSA contents are increased to 5%, a rapid reaction of hydration caused the sinking of the slurry. So, the setting-retarder was added to control the reaction of hydration. By this, the sinking of the slurry was controlled but the height of the green body after expansions was a little bit lowered. In the CSA-added slurry, it was possible to demold within 24 hours and in case of CSA 5%-added, the sufficient workability was secured. Atmospheric steam curing (temperatures $-40{\sim}80^{\circ}C$, for 6~10 hrs.) was attempted to improve the compressive strength and found that an excellent strength of 0.25 MPa was achieved at $80^{\circ}C$ for 8 hrs. Specific gravity was about $0.12{\sim}0.13g/cm^3$ and heat conductivity was about 0.045 W/mK in all specimens. This strategy significantly improves the compressive strength of CSA 5%-added specimen up to 25% compared to without CSA added specimen.