• Title/Summary/Keyword: Clinker

Search Result 273, Processing Time 0.029 seconds

The effect of limestone chemical porperties and substitution amount on mechanical properties of cement mortar (석회석 혼합재의 화학특성이 시멘트 모르타르에 미치는 영향)

  • Suh, Dong-Kyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.163-164
    • /
    • 2022
  • Using the limestone powder as material that can substitute the clinker, it seems to get positive effect as filler and enhance workability of cement but the substitution amount and chemical properties of it can affect mechanical properties of cement. Thus, in this study, the effect limestone powder that has other properties on cement is evaluated. As a result, the workability enhancing effect was confirmed but deterioration of compressive strength was also checked. Later, with the view of workability, the experiment that the possibility of strength compensation by decreasing unit water weight of limestone powder cement is planned when the limestone powder is used.

  • PDF

Effect of Fineness and SO3 Content of Limestone Mixed Cement on Mortar (석회석 혼합시멘트의 분말도 및 SO3 함량이 시멘트 모르타르에 미치는 영향)

  • In, Byung-Eun;Kim, Jin-Sung;Nam, Seong-Young;Kim, Chun-Sik;Cho, Sung-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.105-106
    • /
    • 2023
  • Using the limestone powder as material that can alternate the clinker, it seems to get positive effect as filler and enhance workability of cement, but the amount of replacement can affect compressive strength of cement. This study was evaluated the effect of limestone mixed cement fineness and SO3 content on cement mortar. As a result of measuring the compressive strength, it showed 93% compared to the compressive strength of Plain 28 days at fineness 4,400 and SO3 2.6%. It is judged that additional research is necessary to express the strength equivalent to that of Plain.

  • PDF

Manufacture of CO2 Reactive Hardening Cement Using Waste Concrete Powder (폐콘크리트 미분말을 활용한 이산화탄소 반응경화 시멘트 제조)

  • Lee, hyang-Sun;Song, Hun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.75-76
    • /
    • 2023
  • In the cement industry, various research initiatives are underway to achieve carbon neutrality. Mineral carbonation is a technology that converts carbon dioxide into minerals for storage, and CO2 reactive hardening cement is a type of cement that incorporates mineral carbonation technology. In this study, we aimed to manufacture CO2 reactive hardening cement for reducing carbon emissions in the cement industry by utilizing waste concrete powder generated in the construction sector.

  • PDF

The Recycling of Inorganic Industrial Waste in Cement Industry (시멘트산업에서 무기질 산업 폐·부산물의 재활용)

  • Kang, S.K.;Nam, K.U.;Seo, H.N.;Kim, N.J.;Min, K.S.;Chung, H.S.;Oh, H.K.
    • Clean Technology
    • /
    • v.6 no.1
    • /
    • pp.61-69
    • /
    • 2000
  • In this study, generation process and properties of inorganic industrial waste which can be used in cement industry were investigated. The scheme of recycling to use the selected waste as raw materials, mineralizer and flux, admixture and raw materials for special cement was decided and then various experiments were carried out. The experimental results were as follows ; In the use of industrial waste as raw materials, ferrous materials could be substituted by Cu-slag, Zn-slag, electric arc furnace or convertor furnace slag etc., and a siliceous material could be substituted by sand from cast-iron industry. By-products from sugar or fertilizer industry, which has $CaF_2$ as the main component, and jarosite from Zn refinery enabled clinker phases to be formed at lower temperature by $100{\sim}150^{\circ}C$. Adding Cu slag and STS sludge in proper proportion to cement improved properties of cement. Fly ash and limestone powder as admixture had the same effect on cement. As a raw material for special cement, aluminium waste sludge could be used in making ultra early strength cement, which had the compressive strength of $300kg/cm^2$ within 2hours. And two different ashes from municipal incinerator could be raw materials of the cement which was mainly composed of $C_3S$ and $C_{11}A_7{\cdot}CaCl_2$ as clinker phases.

  • PDF

A Study on Waste Heat Recycling of Plasma Melting System (플라즈마 용융 공정시의 폐열 재활용 연구)

  • Kim, Seong-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.85-90
    • /
    • 2006
  • The purpose of this research is to design an imitation boiler similar to the waste heat boiler installed on a plasma melting furnace in order to acquire a capability of a thermal design as to the circulation of heat and the discharge of noxious gas inside a boiler and to improve the efficiency of a waste heat boiler using the CFD (Computation Fluid Dynamics) program. The position of corrosion and the generation of a clinker inside a boiler due to temperature changes, combustion gas flows, and corrosive gases inside a boiler are examined to design the structure of an efficient boiler and recycle energy. As a result of this research, the boiler installed on a plasma melting furnace met the conditions of design by cooling the combustion gases discharged after the second combustion from an exhaust port, originally at 1,200 degrees Celsius, down to around 450 degrees Celsius. On the other hand, the circulation of corrosive gases (SOx and HCL) may lead to the generation of corrosion or a clinker in the upper and lower parts of an exhaust port more easily than any other parts of a boiler. Accordingly, the corrosion on the inside and outside walls of a boiler may result in a shortened lifespan of a boiler and an inability to recycle waste heat in an efficient manner. A prevention against corrosion at high and low temperatures needs to be considered in detail.

  • PDF

Physical and Chemical Properties of Cement Mortar with Gamma-C2S

  • Lee, Sung-Hyun;Kim, Kyungnam;Mabudo, Mabudo;Song, Myong-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.194-199
    • /
    • 2016
  • Presently, for the cement industry, studies that seek to reduce $CO_2$, because of the development of the plastic industry and demand for reduction of energy use, have been actively conducted among them, studies attempting to use Gamma-$C_2S({\gamma}-C_2S)$ to fix $CO_2$ have been actively conducted. The ${\gamma}-C_2S$ compound has an important function in reacting to $CO_2$ and stiffening through carbonatization in the air. The ${\gamma}-C_2S$ compound, reacting to $CO_2$ in the air, generates $CaCO_2$ within the pore structure of cement materials and densifies the pore structure this leads to an improvement of the durability and to the characteristic of resistance against neutralization. Therefore, in this experiment, in order to synthesize ${\gamma}-C_2S$, limestone sludge and waste foundry sands are used these materials are plasticized for 30 or 60 minutes at $1450^{\circ}C$, and are prevented from being cooled in the temperature range of $30{\sim}1000^{\circ}C$ when they are about to be cooled. XRD analysis and XRF analysis are used to determine the effects of this process on ${\gamma}-C_2S$ synthesization, the temperature at which a thing is plasticized, and the conditions for cooling that obtain in the plasticized clinker also, in order to confirm the $CO_2$ capture function, analysis of the major hydration products is conducted through an analysis of carbonatization depth and compressive strength, and through MIP analysis and XRD Rietveld analysis. As a result of these analyses, it is found that when ${\gamma}-C_2S$ was synthesized, the clinker that was plasticized at $1450^{\circ}C$ for one hour demonstrated the highest yield rate the sample with which the ${\gamma}-C_2S$ was mixed generated $CaCO_3$ when it reacted with $CO_2$ therefore, carbonatization depth and porosity were reduced, and the compressive strength was increased.

Characteristics and Implications of Lava Tubes from Geophysical Exploration in Jeju Island (지구물리 탐사에 의해 발견된 제주도 용암동굴의 특징과 의미)

  • Jeon, Yongmun;Ki, Jin Seok;Koh, Su Yeon;Kim, Lyoun;Ryu, Choon Kil
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.473-484
    • /
    • 2015
  • Geophysical exploration using electric resistivity, ground penetrating radar (GPR), and impedance high-frequency (ZHF) surveys was conducted in Gujwa-eup, Jeju City, Jeju Island, an island in the Korea Strait, to confirm the existence of new caves near known caves. The exploration revealed a number of anomaly zones, presumed to be caves; 27 sites at suitable locations and depth ranges were selected for drilling and further surveys. However, contrary to predictions, most of the anomaly zones were clinker layers or paleosols intercalated with lavas. Only five boreholes intersected caves. The clinker layers and paleosols were possibly detected as anomalies owing to their different physical properties from the other rocks. Two of the five cave-finding boreholes penetrated Yongcheon Cave; a new cave was found at the other. The two boreholes that penetrated Yongcheon Cave were drilled in areas where the cave has not been previously reported, and thus helped correct an error in the cave distribution map. The cave newly discovered in this boring exploration is 180 m long, and it is connected to the upstream part of Dangcheomul Cave (110 m). The cave contains well-developed lava helictites, lava levees, and ropy structures; carbonate speleothems such as soda straws, stalagmites, columns, and curtain shawls are also well preserved. Notably, the unique shape of the carbonate speleothems is attributed to their growth in relation to the cavern water that flowed into the cave along plant roots.

Hydration Property of Electric Arc Furnace Reduction Slag (전기로(電氣爐) 환원(還元) 슬래그의 수화반응(水和反應) 특성(特性) 연구(硏究))

  • An, Yong-Jun;Han, In-Kyu;Choi, Jae-Seok;Bae, Kwang-Hyun;Kim, Hyung-Seok
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.93-101
    • /
    • 2010
  • In this study, we have studied hydration properties and compressive strength of the electric arc furnace reduction slag as a cement admixture. The reduction slag is mainly consisted of 17.1% of f-CaO and rapid curing clinker minerals, 37.1% of $C_{11}A_7CaF_2$, and 21.0% of $C_3A$. When the substitution rate of the slag on OPC was 30%, the initial setting time and final setting time has been shortened from 305 min. and 425 min. to 10min. and 30min. When the substitution rate of the slag on OPC was 7%, the compressive strength of mixed cement mortars has been increased than that of OPC during all period. When the substitution rate of the slag on OPC was over 20%, the compressive strength of mortars has been reduced than that of OPC at initial and final compressive strength. As a result of hydration properties of reduction slag, $C_{11}A_7CaF_2$ transfer to $C_3AH_6$ but as the substitution rate of slag on OPC increases, increased f-CaO and the metastable hydrates $C_4AH_{13}$ increased. Therefore, we should control the substitution rate of the slag on OPC was under 7% in order to use EAF reduction slag as a cement admixture.

Investigation of Characteristics of Incinerator Bottom Ash and Assessment for Recycle due to the Change of MSW Composition (생활폐기물 성상변화에 따른 소각시설 바닥재의 특성 변화와 시멘트 클링커 원료로 재활용 가능성 평가)

  • Lee, Woo Chan;Shin, Deuk Chol;Dong, Jong In
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.103-106
    • /
    • 2014
  • Recycling of bottom ash from municipal solid waste (MSW) incinerator has been strictly limited due to its composition of high level chlorine and other unfavorable substances. The composition of MSW has been, however, changed after the introduction of garbage-bag sales system, extended producer responsibility (EPR) policy and the prohibition of direct landfill of food waste. Recent waste shows reduced moisture and chlorine content, increased calorific value due to the separation of food waste, incombustible materials and PVC. The main purpose of this study is to investigate the trend of composition changes of MSW incinerator bottom ash and to compare the analytical results with those before the separation system was introduced. CaO content of bottom ash, one of the major component of cement clinker, increased from 26.7% in 2001 to 34.0% in 2006. The chlorine content showed a dramatic decrease from 1.84% in 2001 to 0.00655% in 2006, which is closely compatible with that of the fly ash of coal-utilizing thermal power plants, which is mainly due to the changes of MSW composition. It is eventually considered that there is a possibility of utilizing the incinerator bottom ash as a raw material of cement clinker feed substances.

Synthesis of melamine-type functional grinding aids and physical properties of cement applied to them (멜라민계 기능성 분쇄조제의 합성 및 이를 적용한 시멘트의 물리적 특성)

  • Choi, Byung-Wook;Chang, Chun-Ho;Jung, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.126-133
    • /
    • 2019
  • This study intended to manufacture high quality cement, such as solving the quality problem of cement which has been emerging recently, along with improving grinding efficiency. To this end, the synthesis of melamine-functional pulverizing agents and the physical properties of cement applying them were reviewed and the reaction was carried out by dividing the melamine airborne compound into three stages of polymerization using methylation, sulfonation, and acid catalyst to improve the crushing efficiency of cement clinker and the physical properties of manufactured cement. The obtained melamine type copolymer was applied to the grinding process of cement clinker. And it's grinding efficiency and compressive strength were compared with DEG(diethylene glycol) and TIPA(triisopropanol amine). When it comes to the grinding efficiency, by lowering surface energy with stable adsorption from organic polymer to cement particles, the fineness showed 4-6% up. In the meantime, the compression strength hiked 30% from its initial strength compared to the conventional DEG. At the age of 28days, the strength showed approximately 13% improvement. Therefore, it is confirmed that the overall quality has been elevated in comparison with the conventional one.