• Title/Summary/Keyword: Clinker

Search Result 273, Processing Time 0.026 seconds

A Study on the Resource Recovery of Fe-Clinker generated in the Recycling Process of Electric Arc Furnace Dust (전기로 제강분진의 재활용과정에서 발생되는 Fe-Clinker의 자원화에 관한 연구)

  • Jae-hong Yoon;Chi-hyun Yoon;Hirofumi Sugimoto;Akio Honjo
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.50-59
    • /
    • 2023
  • The amount of dust generated during the dissolution of scrap in an electric arc furnace is approximately 1.5% of the scrap metal input, and it is primarily collected in a bag filter. Electric arc furnace dust primarily consists of zinc and ion. The processing of zinc starts with its conversion into pellet form by the addition of a carbon-based reducing agent(coke, anthracite) and limestone (C/S control). These pellets then undergo reduction, volatilization, and re-oxidation in rotary kiln or RHF reactor to recover crude zinc oxide (60%w/w). Next, iron is discharged from the electric arc furnace dust as a solid called Fe clinker (secondary by-product of the Fe-base). Several methods are then used to treat the Fe clinker, which vary depending on the country, including landfilling and recycling (e.g., subbase course material, aggregate for concrete, Fe-source for cement manufacturing). However, landfilling has several drawbacks, including environmental pollution due to leaching, high landfill costs, and wastage of iron resources. To improve Fe recovery in the clinker, we pulverized it into optimal -sized particles and employed specific gravity and magnetic force selection methods to isolate this metal. A carbon-based reducing agent and a binding material were added to the separated coarse powder (>10㎛) to prepare briquette clinker. A small amount (1-3%w/w) of the briquette clinker was charged with the scrap in an electric arc furnace to evaluate its feasibility as an additives (carbonaceous material, heat-generating material, and Fe source).

Basic Properties of Non-Clinker Cement Using Industrial By-Products (산업부산물을 이용한 무 클링커 시멘트의 기초적 특성)

  • 문경주;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.11-16
    • /
    • 2002
  • The production of Portland cement involves maximum use of resources and energy, which leads to destruction of tile ecological environment, raising in serious environmental issues such as acid rain and the greenhouse effect. In order to combat the arising problems associated with Portland cement, it thus is necessary that a non-clinker cement should be developed. In this study, non-clinker cement is produced by blending granulate blast furnace slag with phosphogypsum as main materials, and small amounts of hydrate lime or waste lime as activators. This paper aims to investigate compressive strength according to various condition of mixing ratio, blame, W/C ratio and curing temperature. Compressive strength of non-clinker cement increases continuously according to increase in curing age and blain. Although the compressive strength is fairly comparable to that of OPC in the early curing age, it reaches a higher lever in the later age than that of OPC due to the optimum mixing ratio and the continuous reaction of slag and phosphogypsum. Results obtained from this study have shown that non-clinker cement could be used as a replacement of OPC.

  • PDF

Studies on the Development of Cement of Slag-Gypsum System (슬래그-석고계 시멘트 개발연구)

  • 최상흘;오희갑;지정식;엄태선
    • Journal of the Korean Ceramic Society
    • /
    • v.17 no.4
    • /
    • pp.217-221
    • /
    • 1980
  • Hydration of granulated blastfurnace slag-gypsum-$C_4A_3\bar{S}$ clinker/modified converter slag clinker was investigated to develop the cement of slag-gypsum system. In the hydration of granulated slag-gypsum-$C_4A_3\bar{S}$ system clinker, the hydrates such as ettringite, CSH gel and $AH_3$ gel were formed, and the strength of hardened body would be increased by forming compact microstructure. The modified converter slag clinker which contains alite and calcium aluminate was synthesized, and the hydration reactivity of the cement from this clinker, gypsum and granulated slag is similar to usual portland cement, and the hydrates were mainly CSH, ettringite, and $Ca(OH)_2$.

  • PDF

Synthesis and Properties of Calcium Sulfoaluminate Clinker Using Waste Shell, Spent Oil-Refining Catalyst and Desulfurized Gypsum (폐패각-정유폐촉매-배연탈황석고를 사용한 Calcium Sulfoaluminate 클링커의 합성과 특성)

  • Lee, Keon-Ho;Song, Tae-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.7 s.278
    • /
    • pp.483-489
    • /
    • 2005
  • For the raw materials of 3CaO$\cdot$3Al$_{2}$O$_{3}$ $\cdot$CaSO$_{4}$(CSA) clinker manufacturing, the applications of industrial wastes such as waste shell, spent oil-refining catalyst and desulfurized gypsum were examined. The c1inkerbility of the raw mix and the behaviour of formation of clinker minerals were studied and then some hydraulic properties of cements containing the clinker were also investigated. By virtue of the high reactivity of thermally decomposed raw materials, CSA clinkers were obtained at relatively low temperature of 1250$^{\circ}C$ and thus oil-refining catalysts were more desirable than aluminium hydroxide as an aluminous raw material. The expansive cement samples showed somewhat lower flow value than that of OPC, but their compressive strengths were developed earlier and higher than that of OPC due to formation of ettringite in the early hydration time, which indicated the possibility of practical use of low-cost CSA clinker using industrial wastes only.

A Study on the Characteristics of Clinker and Cement as Chlorine Content (염소 함량에 따른 클링커 및 시멘트의 물성에 관한 연구)

  • Lee, Young-Jun;Kim, Nam-Il;Cho, Jeong-Hoon;Seo, Sung-Kwan;Chu, Yong-Sik
    • Resources Recycling
    • /
    • v.30 no.5
    • /
    • pp.10-16
    • /
    • 2021
  • In this study, a clinker was prepared using raw materials with CaCl2. The characteristics of the chlorine-added clinker and cement were analyzed. The clinker modulus were set to Lime Saturation Factor (LSF) 92, Silica modulus (SM) 2.5, and Iron Modulus (IM) 1.5. The physical properties of cement using the chlorine-containing clinker were characterized. As the chlorine content increased, the free-CaO content in the clinker decreased, and that in the 2000 ppm clinker was reduced by approximately 40% compared to that in the 0 ppm clinker. There was an increase in the amount of chlormayenite, with a content of up to 3.4% present in the 2000 ppm clinker. The amounts of alite and belite also slightly increased. The compressive strength of mortar at 3 days and 7 days increased as the chlorine content increased. This trend was presumed to arise from the effect of hydration, which was promoted by the presence of chlorine. The compressive strength of 1000 ppm mortar increased by approximately 20% compared to that of 0 ppm mortar.

Effect of Change in Coal Ash Content on Sinterability and Phase Change of Cement Clinker (석탄재의 함량변화가 시멘트 클링커의 소성성 및 상변화에 미치는 영향)

  • Dong-Woo Yoo;Young-Jin Im;Sang-Min Choi;Sung-Ku Kwon;Seok-Je Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.16-24
    • /
    • 2023
  • Coal ash generated from thermal power plants using briquettes contains Si, Al, and Fe components. These components are the main components required for the manufacture of cement clinker. In particular, Al and Fe components form the interstitial phase of cement clinker and have an important effect on the sintering of cement clinker. In this study, a large amount of coal ash was applied as a raw material for cement clinker by content, and the mineral formation process of cement clinker to which coal ash was applied was confirmed by sintering temperature. It was confirmed that the intermediate phase was generated in the sintering temperature range of 1050 ~ 1150 ℃ in the cement clinker to which a large amount of coal ash was applied. As the content of coal ash increased, the production amount of the intermediate phase increased. The phase produced by the addition of coal ash is expected to be converted to calcium silicate phase and interstitial phase and disappear above 1350 ℃. The cement clinker applied with a large amount of coal ash at 1450 ℃ formed well-developed minerals equivalent to the standard cement clinker.

Synthesis of Pure and Porous CaO·Al2O3 Clinker by Burning of Hydrates (수화물 소성에 의한 고순도 다공성 CaO·Al2O3 클링커의 합성)

  • Kim, Du-Hyouk;Song, Tae-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.401-406
    • /
    • 2010
  • For the lower-temperature preparation of calcium monoaluminate(CA, C:CaO, A:$Al_2O_3$) clinker which is hard to synthesize purely within its melting point, an equimolar hydrate was obtained and then used as a starting raw material of clinker burning. The hydrate was prepared from a mixture of waste oyster shell and industrial aluminium hydroxide by heating to $1200^{\circ}C$, grinding and mixing with water. The hydrate was composed of amorphous aluminium hydroxide and $C_3AH_6$(H:$H_2O$) formed by resolution-precipitation mechanism of the system C-A-H. By heating the hydrate, nearly pure and porous calcium monoaluminate clinker was formed at $1400^{\circ}C$ which is fairly lower temperature than that of its melting point. The formation of calcium monoaluminate was performed mainly by the reaction between amorphous alumina and $C_{12}A_7$ caused by the decomposition of $C_3AH_6$. The immediate and earlier formation of $C_{12}A_7$ seemed to be accelerated by not only high surface area and instability of the thermally decomposed hydrate but also the catalytic effect of water decomposed from the hydrate. The final calcium monoaluminate clinker was very porous because of the influence of highly porous shape of the thermally decomposed hydrate.

Analysis of the clinker formed in circulating fluidized bed boiler (유동층 보일러에 생성된 크링커에 대한 분석)

  • Kim, Kyeong-Sook;Park, Hyun-Joo;Lee, Tae-Won;Jeong, Nyeon-Ho
    • Analytical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.5-11
    • /
    • 2000
  • During the commissioning period in Tonghae thermal power plant which is the largest circulating fluidized bed boiler in the nation, a considerable amount of clinker was formed at FBAC and seal pot. Various attempts, for example, concentration analysis, surface phenomena, thermal characterization, and crystal structure of ash, bed sand, limestone, clinker, and mixture of each gradients have been studied to identify the causes of clinker formed in circulating fluidized bed boiler. As the results, the characterization of black particles in which separated from the clinker is more similar to that of bed sand, on the other hand, white particles are more similar to ash. In addition, the sintering temperature of sand is over $1,200^{\circ}C$ and this temperature was decreased as limestone is added to bed material. The cause of clinker was proved that ash was sticked to molten or sintered sand or limestone in the area of high temperature in the circulating system.

  • PDF

A Study on Changes in High-Temperature Microstructure of Coal Ash Applied as Cement Clinker Raw Material (시멘트 클링커 원료로서 적용한 석탄재의 고온 미세구조 변화 고찰)

  • Yoo, Dong-Woo;Im, Young-Jin;Kwon, Sung-Ku;Lee, Seok-Je
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.211-218
    • /
    • 2022
  • Coal ash is being considered as a source of silica and alumina for cement clinker. The purpose of this study was to investigate the effect on cement clinker sintering by confirming the high-temperature microstructural change according to the firing temperature in the cement clinker sintering process of coal ash. In the coal ash used as a raw material for cement clinker, the shape change of the particle surface was confirmed from the sintering tem perature of 950 ℃. The shape of the coal ash disappeared from the sintering temperature higher than 1250 ℃. It was confirmed that the Al and Fe components of the coal ash were converted to the cement interstitial phase at a temperature higher than 1350 ℃. In addition, the clinker using a large amount of coal ash as a raw material showed a low content of Lime and a high content of Belite in the sintering tem perature range of 1150~1200 ℃. From this, it was confirmed that the formation of calcium silicate mineral proceeds more easily at the initial sintering temperature by the application of coal ash.