• Title/Summary/Keyword: Clinker

Search Result 273, Processing Time 0.025 seconds

The analytical application for cement using X-Ray diffraction and X-Ray fluorescence spectrometer (X-Ray Diffraction과 X-Ray Fluorescence를 이용한 시멘트 비교 분석)

  • Jung, Ji Eun;Jang, Yu Rim;Kim, Ki-Wook;Heo, Sangcheol;Min, Ji-Sook
    • Analytical Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.340-351
    • /
    • 2013
  • The chemical element and structural characterization of different types of cements and its brick stones are been investigated under forensic aspects using X-ray florescence (XRF) and X-ray diffraction (XRD) spectrometer. The XRF provides rapid compositional data for controlling almost all stages of raw materials, clinker and cement. The decisive advantage of XRD methods is based on the unique character of the diffraction patterns of crystalline substances, the ability to distinguish between elements and their oxides, and the possibility to identify chemical compounds, polymeric forms, and mixed crystals by non-destructive examination. Therefore, combination of these examinations is useful and able to apply for the forensic analysis in comparison of cements and brick stones. There are more study remained to determine the viability of method for forensic analysis of brick stones and the limits of the discrimination that can be achieved.

A Study of Effecting Factor in the Reology and Physical Properties of Cements (시멘트 유동성과 물성에 미치는 영향인자에 관한 연구)

  • 엄태선;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.10
    • /
    • pp.1027-1036
    • /
    • 1997
  • The reology and several physical properties of cements are studied by varying the different mineral composition and particle size distribution(PSD) of cements with closed circuit ball mill for high workability, low heat of hydration, and high strength. In this study, we found that the workability of concretes is related to the viscosity of cement, and affects to strength. Here, this workability is affected by mineral composition (C3A) and the PSD. Especially, rosin-rammer index and 44${\mu}{\textrm}{m}$ residue in the PSD of cements are affected to water demand, casting property, slump loss, strength of cements. From the above results, the conditions of cement for high workability, low heat of hydration and high strength are to use low C3A clinker, 5-10% slag addition, and to grind cement below 0.7 rosin-rammer index, above 3.5-4.5% 44 ${\mu}{\textrm}{m}$ residue, 4000$\pm$100 $\textrm{cm}^2$/g blaine. Such cements are, therefore, supurior to super low heat cement and slag-blended cement in comparing the physical properties of strength, slump, slump-flow, adiabetic temperature, etc.

  • PDF

A Heatmap-based Leakage Location Estimation Algorithm for Circulating Fluidized Bed Boiler Tube Using Acoustic Emission Sensors (음향방출 센서를 이용한 히트맵기반 순환유동층 보일러 튜브 누설 위치 추정 알고리즘)

  • Kim, Jaeyoung;Kim, Jong-Myon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.51-52
    • /
    • 2018
  • 화력발전용 순환유동층 보일러는 환경오염의 주요인인 질소산화물(NOx)과 황산화물(SOx)의 배출량이 적은 친환경 화력발전용 보일러로 화력발전 업계에서 각광받고 있는 추세이다. 그러나 순환유동층 보일러의 연료인 유동매체는 미분탄과 같이 작지만 단단한 고체이므로 유동매체의 타격으로 인해 워터월(waterwall) 튜브의 마모는 물론 누설까지 야기할 수 있다. 순환유동층 보일러 튜브에서 누설된 증기는 보일러 내부에 클링커(Clinker)를 발생시키고 이는 순환유동층 보일러 튜브 표면에 응고되어 열전도율을 감소시킬 뿐만 아니라 보일러 운전정지의 원인이 된다. 따라서 본 논문에서는 음향방출 센서를 이용하여 화력발전용 순환유동층 보일러 튜브의 누설 위치를 추정하는 방법을 제안한다. 제안 방법에서는 매질의 분자단위 이동에 의해 발생되는 탄성파를 감지할 수 있는 음향방출 센서를 이용하고, 보일러 워터월 튜브의 멤브레인 용접부와 비용접부(seamless)의 감쇠율을 고려한 위치별 센서 감도 추정 알고리즘을 통해 워터월 튜브의 위치별 진폭 크기를 히트맵으로 표현할 수 있다.

  • PDF

Study on Phosphate Investment for High Temperature Precision Castings(I);The Effect of Particle size and Distribution of Silica Sand on the characteristics of the Investment (고온정밀주조용 인산염계 매몰재에 관한 연구(I);매몰재의 특성에 미치는 규사의 입도와 입도분포의 영향)

  • Ahn, Ji-Hong;Lee, Jong-Nam
    • Journal of Korea Foundry Society
    • /
    • v.5 no.2
    • /
    • pp.85-96
    • /
    • 1985
  • In order to investigate the effect of particle size and distribution of silica sand on the characteristics of investment, W/P ratio, setting time, temperature change during setting, setting expansion, thermal expansion and compressive strength of the investments were measured. In this experiment, magnesia clinker and mono ammonium phosphate were used as binder, and particle size and distribution of silica sand were classified for convinence into 10 categories. The main results obtained from this investigation were summerized as follows. 1. W/P ratio decreased with increase of particle size and evenness in distribution of sand grain. 2. Setting time decreased with increase of evenness in distribution of sand grain, and temperature during setting increased with evenness in distribution of sand grain. 3. Setting expansion decreased with increase of particle size, while it increased with evenness in distribution of sand grain. 4. Thermal expansion decreased with increase of particle size. 5. Compressive strength increased with increase of particle size and evenness in distribution of sand grain. From above results, G.F.N. 250 sand which contains 30% of 50-100 mesh could be recommended for investment casting.

  • PDF

Interaction of Alkali Oxide and $SO_3$ on $3CaO.SiO_2$ Formation and Microstructure ($3CaO.SiO_2$ 생성반응과 미세조직에 있어서 Alkali Oxide와 $SO_3$의 상호작용)

  • 정해문;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.12
    • /
    • pp.1071-1079
    • /
    • 1993
  • Interaction of alkali oxides and SO3 and C3S formation and microstructure was studied using K2CO3 and Na2CO3 as alkali sources and (NH4)2SO4 for SO3. When SO3/K2O=1.43 as mole ratio, K2O and SO3 react to form K2SO4, this phase is immiscible with other oxide melt and thus could not affect C3S formation as well as its microstructure. In a condition of SO3/K2O 1, C3S crystals were round and grown in a much larger size. With addition of Na2O and SO3 by only 1wt% each, C3S formation was strongly hindered. Since C2S was stabilized by Na+ and SO4-2, it could not react to give C3S formation. However in the condition of SO3/Na2O=1.43, a little amount of C3S was formed. It is considered that small amount of Na2SO4 was formed, this phase was immiscible with clinker liquid, and the C3S crystals were formed locally in the liquid part of relatively low Na2O and SO3 compositions. These crystals had irregular and rough surfaces and contained more inclusions than those grown from K2O.SO3 system.

  • PDF

Effects of $Fe_2O_3$ Addition on the Properties of MgO and Dolomite (마그네시아와 돌로마이트의 특성에 미치는 $Fe_2O_3$ 의 첨가영향)

  • 박재원;홍기곤
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.738-746
    • /
    • 1997
  • MgO clinker and two kinds of dolomite clinkers with different microstructures and CaO contents were used as starting materials, and the effects of Fe2O3 addition on the properties of MgO and dolomite were investigated in the range of 2 to 8 wt% of Fe2O3 content. Secondary phases contributed to densification of MgO-Fe2O3 and dolomite-Fe2O3 were magnesioferrite and dicalciumferrite, respectively. Sinterabilities of MgO-Fe2O3 and dolomite-Fe2O3 were directly proportional to the amount of secondary phases. Also, sinterability of dolomite itself was dependent on the microstructure of starting material including distribution of CaO and MgO as well as the addition amount of Fe2O3. The flexural strength of MgO-Fe2O3 content was almost constant. The hydration resistance of dolomite with large size of MgO and discontinuous distribution of CaO was higher than that of dolomite with small size of MgO and continuous distribution of CaO. Also, the minimum content of Fe2O3 to prevent they hydration of dolomite was about 4wt%. As increasing Fe2O3 content, the penetration resistance of MgO-Fe2O3 was improved by the increment of magnesioferrite. On the other hand, the penetration resistance of dolomite-Fe2O3 was decreased because of the increment of dicalciumferrite having low melting point.

  • PDF

Investigation of Cement Matrix Compositions of Nanosilica Blended Concrete

  • Kim, Jung Joong;Moon, Jiho;Youm, Kwang-Soo;Lee, Hak-Eun;Lim, Nam-Hyoung
    • International Journal of Railway
    • /
    • v.7 no.3
    • /
    • pp.85-89
    • /
    • 2014
  • The use of pozzolanic materials in concrete mixtures can enhance the mechanical properties and durability of concrete. By reactions with pozzolanic materials and calcium hydroxide in cement matrix, calcium-silicate-hydrate (C-S-H) increases and calcium hydroxide decreases in cement matrix of concrete. Consequently, the volume of solid materials increases. The pozzolanic particles also fill spaces between clinker grains, thereby resulting in a denser cement matrix and interfacial transition zone between cement matrix and aggregates; this lowers the permeability and increases the compressive strength of concrete. Moreover, the total contents of alkali in concrete are reduced by replacing cements with pozzolanic materials; this prevents cracks due to alkali-aggregate reaction (AAR). In this study, nanosilica is incorporated in cement pastes. The differences of microstructural compositions between the hydrated cements with and without nanosilica are examined using nanoindentation, XRDA and $^{29}Si$ MAS NMR. The results can be used for a basic research to enhance durability of concrete slab tracks and concrete railway sleepers.

The property of inorganic insulation material depending on CSA contents and atmospheric steam curing condition

  • Kim, Tae-Yeon;Chu, Yong-Sik;Seo, Sung-Kwan;Yoon, Seog-Young
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.407-412
    • /
    • 2018
  • In this study, we have made a cement based inorganic insulation material and added CSA (Hauyne Clinker) to reduce the demolding time and enhance the handling workability. CSA contents were varied by 0%, 1%, 3%, 5% and the atmospheric steam curing was tried for enhancing the compressive strength. As the CSA contents are increased to 5%, a rapid reaction of hydration caused the sinking of the slurry. So, the setting-retarder was added to control the reaction of hydration. By this, the sinking of the slurry was controlled but the height of the green body after expansions was a little bit lowered. In the CSA-added slurry, it was possible to demold within 24 hours and in case of CSA 5%-added, the sufficient workability was secured. Atmospheric steam curing (temperatures $-40{\sim}80^{\circ}C$, for 6~10 hrs.) was attempted to improve the compressive strength and found that an excellent strength of 0.25 MPa was achieved at $80^{\circ}C$ for 8 hrs. Specific gravity was about $0.12{\sim}0.13g/cm^3$ and heat conductivity was about 0.045 W/mK in all specimens. This strategy significantly improves the compressive strength of CSA 5%-added specimen up to 25% compared to without CSA added specimen.

The Utilization of Domestic Fly Ash as a Cement Raw Material (시멘트 원료로 국내산 석탄재의 이용 가능성)

  • Lee, Yoon-Cheol;Lee, Se-Yong;Min, Kyung-So;Lee, Chang-Hyun;Park, Tae-Gyun;Yoo, Dong-Woo
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.23-29
    • /
    • 2022
  • Fly ash is a by-product of coal fired electrical power plants and used as a material for cement and concrete; particularly, imported fly ash is mainly applied for cement production. Main objectives of this article are to replace domestic fly ash with an imported source. To verify the possibility of domestic fly ash as a material for cement from the aspect of chemical composition and physical properties, we manufactured various kinds of cement, such as using only natural raw material, shale, and partial replacement with domestic and imported fly ash. When we used the domestic and imported fly ash, there were no specific problems in terms of clinker synthesis or cement manufacturing in relation to the natural material, shale. In conclusion, domestic fly ash has been confirmed as an alternative raw material for cement because 7 days and 28 days compressive strength values were better than those of reference cement using natural raw material, on top of the process issue.

Characteristics of early strength development of blended cement according to the addition of C-S-H based Hardening acceleration (C-S-H계 조강제 첨가에 따른 혼합시멘트의 조기 강도 발현 특성)

  • An, Tae-Yun;Ra, Jeong-Min;Park, Jun-Hyung;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.127-128
    • /
    • 2022
  • In order to realize carbon neutrality in the international society, research on supplementary cementitious materials(SCMs) has been actively conducted as a way to reduce carbon dioxide emissions in the cement industry. However, the use of SCMs causes problems of initial hydration delay and strength reduction due to the reduction of tricalcium silicate(C3S) in the cement clinker. Therefore, in this study, the initial hydration and basic characteristics of cement mortar were confirmed by adding a C-S-H based hardening acceleration to blended cement mixed with Portland cement, blast furnace slag, fly ash, and limestone power. As a result of the heat of hydration and compressive strength test, it was confirmed that when hardening acceleration was added, the initial reactivity was high, so the heat of hydration was promoted, and the initial strength was increased. It is considered to be due to C-S-H seeding effect. Therefore, it is judged that the use of C-S-H based hardening acceleration can supplement the problem of initial hydration delay of blended cement in Korea.

  • PDF