• Title/Summary/Keyword: Clinker

Search Result 273, Processing Time 0.032 seconds

Manufacturing of Calcium Silicate Cement Using Construction Waste (건설폐기물을 활용한 이산화탄소 반응경화 시멘트 제조에 관한 연구)

  • Lee, Hyang-Sun;Son, Bae-Geun;Song, Hun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.47-48
    • /
    • 2023
  • In the domestic industrial sector, greenhouse gases emitted from the cement industry account for about 10%, with most of them generated during the cement clinker calcination process. During the calcination process, 57% of carbon dioxide is emitted from the decarbonation reaction of limestone, 30% from fuel consumption, and 13% from electricity usage. In response to these issues, the cement industry is making efforts to reduce carbon dioxide emissions by developing technologies for raw material substitution and conversion, improving process efficiency by utilizing low-carbon alternative heat sources, developing CO2 capture and utilization technologies, and recycling waste materials. In addition, due to the limitations in purchasing and storing industrial byproducts generated from industrial facilities, many studies are underway regarding the recycling of construction waste. Therefore, this study analyzes the manufacture of calcium silicate cement (CSC), which can store carbon dioxide as carbonate minerals in industrial facilities, and aims to contribute to the development of environmentally friendly regenerated cement using construction waste.

  • PDF

Analysis of Blasting Vibration at the Irregular Layered Structure Ground (불규칙한 층상구조 지반에서의 발파진동 분석)

  • Kim, Seung Hyun;Lee, Dong Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.891-901
    • /
    • 2016
  • By comparing test blasting data experimented in three layered-structure polymorphic grounds to a geological profile, influence of blast vibration with respect to uncontrollable ground characteristics was analyzed. Inefficient blast have been performed without sufficient verifications or confirmations because insufficiencies with regard to experiments and data of blasting engineering on the layered structures to be irregularly repeated clinker layer consisted of volcanic clastic zones. It is difficult to quantify N values of clinkers within test blasting region because they have diverse ranges, or coverages. An absolute value of attenuation coefficient N in a field, estimated by blasting vibration predictive equation (SRSD), are lesser than criteria of a design instruction, meaning that vibrations caused by blast can spread far away, and the vibrational characteristics of blasting test No.1, indicating relatively small values, inferred by the geological profile, pressures of gas by the explosion may be lost into a widely distributed clinker layers by penetrating holes resulted from blast into vicinity of clinker layers located in bottom of soft rock layers at the moment of blast. As a result, amounts of spalling rocks are decreased by almost half. Also, ranges of primary frequencies in the fields are identified as similar to those of natural frequency of typical structures.

Geochemical Modelling of the Effect of Calcite and Gypsum on the Hydration of Cements (방해석 및 석고가 시멘트 수화과정에 미치는 영향에 대한 지구화학 모델링 연구)

  • Ryu, Ji-Hun;Kim, Geon-Young;Koh, Yong-Kwon;Choi, Jong-Won
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.151-159
    • /
    • 2010
  • The effect of calcite and gypsum on the hydration of Portland cement was investigated using GEM-PSI, a geochemical model. Addition of calcite and gypsum up to 5 wt% of total cement clinker into Portland cement was found to influence the hydrate assemblage of the hydrated cement in different ways. The results of geochemical modelling showed that the fraction of calcium monocarbonate increased by the hydration of cement with the increase of calcite addition. The results of modelling also indicated that gypsum increased the fraction of ettringite in the assemblage of hydrated cement as the amount of gypsum added increases. This study showed that porosity generated by the hydration of cement had a significant relation with the amount of calcite and gypsum added. The porosity of hydrated cement was lower when calcite added up to 3 wt% of cement clinker compared to the hydrated cement with the same amount of gypsum addition. However, when calcite added more than 3% of cement clinker, the porosity of hydrated cement were higher than that of hydrated cement with the same amount of gypsum addition.

Recycling Technology Trend of Waste Concrete Powder for Carbon Neutrality in the Cement Industry (시멘트 산업 탄소중립을 위한 폐콘크리트 미분말의 재활용 기술 동향)

  • Sang-Chul, Shin;Jin-Man, Kim;Geon-Woo, Kim;In-Gyu, Kang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.465-474
    • /
    • 2022
  • Research on the recycling of waste concrete has been conducted mainly focusing on the production of high-quality recycled ag g reg ate, and as a result, standards and specifications for recycled ag g reg ate have been established. However, in the case of waste concrete powder, although a lot of research on its utilization has been conducted in Korea, an innovative technology leading to commercialization has not yet been announced. Recently, research on technology using waste concrete powder as a raw material for clinker or cement has been actively conducted in major overseas advanced countries. This study investigated the overseas cases with regard to high value-added recycling technology and commercialization trend of waste concrete powder for carbon neutrality in cement and concrete industries. A number of studies have reported that it is essential to completely separate the aggregate and hydrated cement paste fraction for recycling of waste concrete powder. Also in major foreig n countries such as EU and USA, commercialization and standardization of using waste concrete powder as a raw material for clinker or a additive for cement are now in progress beyond the R&D stage. Therefore, Research and standardization for recycling of waste concrete powder should be urgently carried out from the perspective of carbon neutrality in Korea.

Optimal Abrasion Conditions for Separating Aggregate and Cement paste for Using Waste Concrete Fine Powder as Decarbonization Raw Material (폐콘크리트 미분말을 탈탄산 원료로 사용하기 위한 골재와 시멘트페이스트 분리의 최적 마쇄 조건 분석)

  • Ha-Seog Kim;Min-Chul Lee
    • Land and Housing Review
    • /
    • v.14 no.4
    • /
    • pp.121-129
    • /
    • 2023
  • In this study, we attempted to reduce CO2 generated during manufacturing by replacing limestone (CaCO3), a carbonate mineral used to produce cement clinker, with a decarbonated raw material to which CO2 is not bound. The raw material for decarbonization was cement paste attached to waste concrete, among various industrial by-products. Waste concrete has cement paste adhered to the aggregate, which cannot be separated efficiently by general crushing and grinding methods. Peeling and grinding methods effectively remove only the cement paste without damaging the original aggregate. The abrasion time, steel ball type, and steel ball ratio were selected as effective factors for Abrasion. An optimal abrasion experiment was conducted to produce waste concrete fine powder containing decarbonated CaO as a cement clinker raw material through an experimental design method. The experiment revealed that the optimal conditions for producing waste concrete fine powder were an abrasion time of 7 minutes, a steel ball size for pulverization of 8 mm, and a steel ball ratio for pulverization of 0.6.

Influences of Cooling Atmosphere on the Whiteness in White Portland Cement (백 시멘트의 백색도에 미치는 냉각분위기의 영향)

  • 한기성;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.2
    • /
    • pp.85-88
    • /
    • 1978
  • Influence of cooling atmosphere on the whiteness in white portland cement was studied. The effective composition of gaseous medium of cooling atmosphere is desirable less than 0.5% of $O_2$ and 0.5~1.5% of CO. When theclinker is quenched in nitrogen atmosphere, the color of clinker becomes bright pink. In a weakly reducing gaseous medium or vacuum, the absence of oxygen brings defects in crystal and transformation in the coordination of iron, and as a result, whiteness is raised.

  • PDF

크링카 색상에 관한 문헌검토

  • 김송호
    • Cement
    • /
    • s.87
    • /
    • pp.48-50
    • /
    • 1982
  • 화학적인 면에서 황색 clinker를 생성하는 근본원인은 $Fe^{3+}$이온이 $Fe^{3+}$이온으로 되거나, $Mg^{2+}$이온이 $Fe^{3+}$에 작용할수 없는 경우다. 이러한 원인이 생기는 공정상의 요인으로는 전체적 또는 부분적인 환원분위기, 화염접촉 및 과소, 원료에 산화물이 함유된 경우, 서냉 또는 1,250$^{\circ}C$이하에서 냉각, 기타 MgO, $MnO_2$, $Cr_2O_3$, $TiO_2$ 등 미량성분의 경향을 들 수 있다. 환원분위기의 경우에는 free CaO의 증가, $C_3S$의 감소로 인한 강도저하와 $C_3A$ 증가, $C_4AF$ 감소에 의한 조기 경화를 초래하게 되어 품질이 저하된다.

  • PDF

Characteristics of Clinker in Circulating Fluidized Bed Combustor (순환유동층 연소로의 클링커 특성)

  • 이준일;정봉진;고정민;선도원;최정후;김수섭;한기홍;우형관;서영태
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.539-544
    • /
    • 2003
  • 국내 산업체에 열병합 또는 발전용 보일러로 보급되어 있는 순환유동층 연소로는 저렴한 연료비와 높은 열효율, 탁월한 공해저감효과를 나타내는 장점을 가지고 있으나 순환유동층 연소로의 운전기술은 체계적으로 정리된 지침이 마련되어 있지 않으며, 이러한 기술정보의 부재가 신규보일러의 보급에 장애가 되고 있다.(중략)

  • PDF

Hydration of Modified Converter Slag (개질한 전노슬래그의 수화반응)

  • 엄태선;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.3
    • /
    • pp.157-162
    • /
    • 1981
  • A converter slag has been heat-treated above melting point at reduced condition by cokes. As the result, most iron was separated. To make hydraulic compounds, calcium oxide was added to the reduced converter slag and the mixtures were sintered. This modified converter slag clinker mainly contained tricalcium silicate and calcium aluminates, and have a great potential to be a good hydraulic cement. The hydrates of the hydraulic compounds and gypsum with and without granulated slags, were mainly C-S-H, ettringite, calcium monosulfoaluminate hydrate, calcium aluminate hydrate, and $Ca(OH)_2$

  • PDF