• Title/Summary/Keyword: Clinical pharmacology

Search Result 1,488, Processing Time 0.029 seconds

Small Molecule Drug Candidates for Managing the Clinical Symptoms of COVID-19: a Narrative Review

  • Yun, Chawon;Lee, Hyun Jae;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.571-581
    • /
    • 2021
  • Towards the end of 2019, an atypical acute respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in Wuhan, China and subsequently named Coronavirus disease 2019 (COVID-19). The rapid dissemination of COVID-19 has provoked a global crisis in public health. COVID-19 has been reported to cause sepsis, severe infections in the respiratory tract, multiple organ failure, and pulmonary fibrosis, all of which might induce mortality. Although several vaccines for COVID-19 are currently being administered worldwide, the COVID-19 pandemic is not yet effectively under control. Therefore, novel therapeutic agents to eradicate the cause of the disease and/or manage the clinical symptoms of COVID-19 should be developed to effectively regulate the current pandemic. In this review, we discuss the possibility of managing the clinical symptoms of COVID-19 using natural products derived from medicinal plants used for controlling pulmonary inflammatory diseases in folk medicine. Diverse natural products have been reported to exert potential antiviral effects in vitro by affecting viral replication, entry into host cells, assembly in host cells, and release. However, the in vivo antiviral effects and clinical antiviral efficacies of these natural products against SARS-CoV-2 have not been successfully proven to date. Thus, these properties need to be elucidated through further investigations, including randomized clinical trials, in order to develop optimal and ideal therapeutic candidates for COVID-19.

Establishing Rationale for the Clinical Development of Cell Therapy Products: Consensus between Risk and Benefit

  • Seunghoon Han;Hyeon Woo Yim;Hyunsuk Jeong;Suein Choi;Sungpil Han
    • International Journal of Stem Cells
    • /
    • v.16 no.1
    • /
    • pp.16-26
    • /
    • 2023
  • Despite long-term research achievements, the development of cell therapy (CT) products remains challenging. This is because the risks experienced by the subject and therapeutic effects in the clinical trial stage are unclear due to the various uncertainties of CT when administered to humans. Nevertheless, as autologous cell products for systemic administration have recently been approved for marketing, CT product development is accelerating, particularly in the field of unmet medical needs. The human experience of CT remains insufficient compared with other classes of pharmaceuticals, while there are countless products for clinical development. Therefore, for many sponsors, understanding the rationale of human application of an investigational product based on the consensus and improving the ability to apply it appropriately for CT are necessary. Thus, defining the level of evidence for safety and efficacy fundamentally required for initiating the clinical development and preparing it using a reliable method for CT. Furthermore, the expertise should be strengthened in the design of the first-in-human trial, such as the starting dose and dose-escalation plan, based on a sufficiently acceptable rationale. Cultivating development professionals with these skills will increase the opportunity for more candidates to enter the clinical development phase.

Angiotensin-Converting Enzyme Gene Polymorphism is not Associated with Myocardial Infarction in Koreans

  • Chai, Seok;Sohn, Dong-Ryul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.5
    • /
    • pp.645-650
    • /
    • 1998
  • To assess the relationship between angiotensin-converting enzyme (ACE) gene polymorphism and myocardial infarction in Koreans, we recruited 112 healthy, unrelated subjects (mean age 53.4 years) and 104 myocardial infarction survivors (mean age 54.2 years) of both sexes. An insertion/deletion (I/D) polymorphism of the ACE gene was typed by polymerase chain reaction. The I allelic frequency of ACE gene in Korean subjects was irrelavant to myocardial infarction (patients, 65 control subjects 66%), as was true with the D allele. When compared with other populations, the frequency of D allele in Koreans (0.34) was lower than that in Caucasians, and was close to that of other Oriental populations. The data suggest that the ACE gene polymorphism is not an independent genetic risk factor for myocardial infarction in Koreans.

  • PDF

Effects of Chlorhexidine Digluconate on Rotational Rate of n-(9-Anthroyloxy)stearic Acid in Porphyromonas ginginvalis Outer Membranes

  • Jang, Hye-Ock;Cha, Seong-Kweon;Lee, Chang;Choi, Min-Gak;Huh, Sung-Ryul;Shin, Sang-Hun;Chung, In-Kyo;Yun, Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.3
    • /
    • pp.125-130
    • /
    • 2003
  • The aim of this study was to provide a basis for studying the molecular mechanism of pharmacological action of chlorhexidine digluconate. Fluorescence polarization of n-(9-anthroyloxy)stearic acid was used to examine the effect of chlorhexidine digluconate on differential rotational mobility of different positions of the number of membrane bilayer phospholipid carbon atoms. The six membrane components differed with respect to 2, 3, 6, 9, 12, and 16-(9-anthroyloxy)stearic acid (2-AS, 3-AS, 6-AS, 9-AS, 12-AS and 16-AP) probes, indicating different membrane fluidity. Chlorhexidine digluconate increased the rate of rotational mobility of hydrocarbon interior of the cultured Porphyromonas gingivalis outer membranes (OPG) in a dose-dependent manner, but decreased the mobility of surface region (membrane interface) of the OPG. Disordering or ordering effects of chlorhexidine digluconate on membrane lipids may be responsible for some, but not all of its bacteriostatic and bactericidal actions.

Allopurinol-induced severe cutaneous adverse reactions: A report of three cases with the HLA-B58:01 allele who underwent lymphocyte activation test

  • Kim, Eun-Young;Seol, Jung Eun;Choi, Jae-Hyeog;Kim, Na-Yul;Shin, Jae-Gook
    • Translational and Clinical Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.63-66
    • /
    • 2017
  • Allopurinol-induced severe cutaneous adverse reactions (SCARs) such as Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome are reportedly associated with the $HLA-B^{\star}58:01$ genotype. Three patients who developed SCARs after allopurinol administration were subjected to HLA-B genotyping and lymphocyte activation test (LAT) to evaluate genetic risk and to detect the causative agent, respectively. All three patients given allopurinol to treat gout were diagnosed with DRESS syndrome. Symptom onset commenced 7-24 days after drug exposure; the patients took allopurinol (100-200 mg/d) for 2-30 days. HLA-B genotyping was performed using a polymerase chain reaction (PCR)-sequence-based typing (SBT) method. All patients had a single $HLA-B^{\star}58:01$ allele: $HLA-B^{\star}13:02/^{\star}58:01$ (a 63-year-old male), $HLA-B^{\star}48:01/^{\star}58:01$ (a 71-year-old female), and $HLA-B^{\star}44:03/^{\star}58:01$ (a 22-year-old male). Only the last patient yielded a positive LAT result, confirming that allopurinol was the causative agent. These findings suggest that patients with $HLA-B^{\star}58:01$ may develop SCARs upon allopurinol administration. Therefore, HLA-B genotyping could be helpful in preventing serious problems attributable to allopurinol treatment, although PCR-SBT HLA-B genotyping is time consuming. A simple genotyping test is required in practice. LAT may help to identify a causative agent.

Searching for Novel Candidate Small Molecules for Ameliorating Idiopathic Pulmonary Fibrosis: a Narrative Review

  • Kyung-il Kim;Rajib Hossain;Xin Li;Hyun Jae Lee;Choong Jae Lee
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.484-495
    • /
    • 2023
  • Idiopathic pulmonary fibrosis (IPF) can be defined as a progressive chronic pulmonary disease showing scarring in the lung parenchyma, thereby resulting in increase in mortality and decrease in the quality of life. The pathophysiologic mechanism of fibrosis in IPF is still unclear. Repetitive microinjuries to alveolar epithelium with genetical predisposition and an abnormal restorative reaction accompanied by excessive deposition of collagens are involved in the pathogenesis. Although the two FDA-approved drugs, pirfenidone and nintedanib, are under use for retarding the decline in lung function of patients suffered from IPF, they are not able to improve the survival rate or quality of life. Therefore, a novel therapeutic agent acting on the major steps of the pathogenesis of disease and/or, at least, managing the clinical symptoms of IPF should be developed for the effective regulation of this incurable disease. In the present review, we tried to find a potential of managing the clinical symptoms of IPF by natural products derived from medicinal plants used for controlling the pulmonary inflammatory diseases in traditional Asian medicine. A multitude of natural products have been reported to exert an antifibrotic effect in vitro and in vivo through acting on the epithelial-mesenchymal transition pathway, transforming growth factor (TGF)- β-induced intracellular signaling, and the deposition of extracellular matrix. However, clinical antifibrotic efficacy of these natural products on IPF have not been elucidated yet. Thus, those effects should be proven by further examinations including the randomized clinical trials, in order to develop the ideal and optimal candidate for the therapeutics of IPF.