• Title/Summary/Keyword: Climax forest

Search Result 97, Processing Time 0.021 seconds

Vegetation Characteristics in the Jeopdo(Island), Jindo-gun (진도군 접도의 식생 특성)

  • Kang, Hyun-Mi
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.1
    • /
    • pp.27-41
    • /
    • 2020
  • The purpose of this study was to survey vegetation characteristics of Jeopdo (island) for the construction of a database. We installed and analyzed 52 plots with 100㎡ quadrat to investigate the vegetation characteristics. The community classification based on TWINSPAN found seven categories of vegetation communities in the surveyed region: Pinus thunbergii-Pinus densiflora community, Pinus densiflora-Quercus serrata community, Carpinus turczaninowii-Quercus variabilis community, Carpinus turczaninowii-Quercus acutissima community, Quercus variabilis-Carpinus turczaninowii community, Castanopsis sieboldii community, and Actinodaphne lancifolia-Camellia japonica community. The vegetation in Jeopdo is largely composed of evergreen conifer trees community (communities I and II), Carpinus turczaninowii-deciduous broad-leaved trees such as Quercus spp. community (communities III, IV, and V), and evergreen broad-leaved trees community (communities VI and VII). The evergreen conifer tree (Quercus serrata) community is currently competing with Pinus densiflora and Pinus thunbergii. The current state is expected to continue due to the lack of forces, such as Castanopsis sieboldii and Actinodaphne lancifolia, in the succession middle stage and climax stage. The current state of Carpinus turczaninowii-deciduous broad-leaved trees such as Quercus spp. community is expected to last for a long time due to slow vegetation development because of soil conditions. The evergreen broad-leaved trees community is transforming from the initial stage of Pinus densiflora and Pinus thunbergii through the stage in Quercus serrata to Castanopsis sieboldii and Actinodaphne lancifolia. The overall ages of the specimens were similar, and the oldest tree was the 59-year old Castanopsis sieboldii. The correlation analysis of major species showed a high positive correlation between Pinus thunbergii and Eurya japonica, Pinus densiflora and Fraxinus sieboldiana, and Actinodaphne lancifolia and Camellia japonica and a high negative correlation between Pinus densiflora and Carpinus turczaninowii and Carpinus turczaninowii and Eurya japonica.

Vegetation Types and Their Structures of the Piagol, Mt. Chiri (지리산 피아골의 식생형과 그 구조)

  • 장윤석;임양재
    • Journal of Plant Biology
    • /
    • v.28 no.2
    • /
    • pp.165-175
    • /
    • 1985
  • The natural forest vegetation of the Piagol, Mt. Chiri, was classified into five major communities, i.e. Quercus mongolica, Carpinus laxiflora, C. tschonoskii, Q. serrata and Fraxinus mandshurica community. C. tschonoskii, C. laxiflora and Q. mongolica characteristically were dominated in the range of 500∼700 m, 700∼900 m and 900∼1,400 m in altitude, respectively. Abies nephrolepis and Rhododendron schlippenbachii in the ridge of Nogodan-Nalnaribong, and F. mandshurica and Q. serrata in the Yongsuam ravine were found as the dominant species. The transition between C. tschonoskii and C. laxiflora communities was relatively wide. The boundary between F. mandshurica, in the conglomerated zone, and the other communities surrounding its community was fairly abrupt. In Q. mongolica community, the canopy was relatively opened and the oak young tree of undergrowth was fairly dense. In the community of C. laxiflora and C. tschonoskii, the species composed of their understory was rich while their coverage was lower than that of Q. mongolica community. Shannon's diversity index was decreased in order of C. tschonoskii, C. laxiflora and Q. mongolica community, while their Simpson's dominance index increased conversely. Judging by the DBH-class distribution showing the negative exponential curve, these communities were considered as the climax forest. In Polar Ordination used samples (quadrats), the vegetation of the Piagol was divided into five groups, which was coincided with five communities classified by Braun-Blanquet system. In the ordination, the first axis and the second axis may be considered soil conditions and thermal conditions, respectively. It seems that two different methods, phytosociological method in macro level and ordination techniques in micro level, are useful for the vegetation classification.

  • PDF

Vegetation Structure of the Hyangjeokbong in the Deogyusan National Park (덕유산국립공원 향적봉 일대 식생구조 연구)

  • Kim, Hyoun-Sook;Lee, Sang-Myong;Song, Ho-Kyung
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.6
    • /
    • pp.708-722
    • /
    • 2010
  • This study was carried out to classify vegetation structure of the Hyangjeokbong in the Deogyusan National Park using the gradient analysis and phytosociological method. The vegetation was classified into Quercus mongolica community(Rhododendron schlippenbachii subcommunity, typical subcommunity), Q. serrata community, Q. variabillis community, Pinus densiflora community, Cornus controversa community, Fraxinus mandshurica community and Taxus cuspidata community. Ecological characteristics such as species composition, layer structure, vegetation ratio, and the distribution of individual trees by DBH(diameter at breast height) were significantly different among communities. The order of important value of the forest community with DBH 2cm above plants was Q. mongolica(81.2), F. mandshurica, Q. serrata, P. densiflora, Acer pseudosieboldianum, Q. variabillis, Rhododendron schlippenbachii, C. controversa, T. cuspidata. Distribution of DBH of Q. mongolica and Q. serrata had suggesting a continuous domination of these species over the other species for the time being. In contrast, F. mandshurica appeared limited to the valley of the sheet and a higher frequency of young individuals, suggesting a continuous domination of these species the development of a climax forest terrain. P. densiflora and T. cuspidata had suggesting a continuous domination of these species over the other species for the time being in maintain. Q. variabilis and C. controversa had a formality distribution, suggesting a continuous domination of these species over the other species for the time being. This study examined the correlation between each community and the environment according to DCCA ordination. The Q. mongolica community and T. cuspidata community predominated in the highest elevation habitats which had few moisture, Ca and in the low pH. The Q. serrata community mainly occurred in the low elevation habitats which had many moisture. P. densiflora community predominated in the middle elevation and south-facing slope habitats which had few moisture, Ca and in the low pH. F. mandshurica community predominated in the low elevation habitats which had many moisture, Ca and pH.

Pattern and association within Pinus densiflora communities in Kyunggi Province, Korea (소나무 군집안의 주요 구성종의 미분포와 종간 상관)

  • 오계칠
    • Journal of Plant Biology
    • /
    • v.13 no.1
    • /
    • pp.33-46
    • /
    • 1970
  • Pinus densiflora stands are common secondary forest communities on infertile soils in Korea. The stands are results of long severe past biotic pressure such as cutting, burning and grazing. These could be regarded as biotic climax in Korea. Because of their prevalent occurrence, relatively simple species and age composition, and their domestic economic importance, study of their distributional patterns may give some basic knowledge for better utilization of land resources in Korea. To detect distributional patterns and interspecific associations ten pine stands, each of which was homogenious with respect to topography and physiognomy, were subjectively selected from pine stands in Kyunggi Province near Seoul in 1969 and were made object of this study. Four contiguous systematic samples of count for trees, shrubs and seedlings from belt transects were collected from homogeneous areas within ten natural pine stands. The belt transect was 64m or 128m in length, and 1m, 2m or 4m in width. Basic units within the transect ranged from 64 to 256. The data from the contiguous transects were analysed in terms of multiple split-plot experiment. Departure from randomness of stem distribution, i.e., pattern, was tested in terms of variance mean ratio. For the detection of association between species, correlation coefficient was calculated for different block sizes. The values of ${\gamma}$ were tested by the usual t-test. Fine trees within one of the stands showed significant regular distribution through out the blocks. Within other eight stands pines were randomly distributed at basic unit with 4$\times$4m, 2$\times$2m, 2$\times$1m and 1$\times$1m. One significantly clumped distribution at basic unit 2$\times$2m, however, was observed from one of the pine stands. These randomly distributed groups were themselves significantly regularly distributed throughout the blocks for four pine stands. For the other four pine stands, in addition to the random distribution at the basie unit(the primary random group), randomly distributed groups with 32m dimension(the secondary random groups) were also observed. Both the primary and the secondary random groups were significantly regularly distributed at the rest of blocks. Pine seedlings were not distributed randomly thoughout the blocks. Within three of the ten stands they were contagiously distributed. Important shrub species underneath pines such as Querus serrata, Q. acutissima, Leapedeza intermedia, Rhododendron Yedoense var. poukhanenae, Juniperus utilis, Rhododendron mucronulatum var. ciliatum shnwed consistently similar distributional pattern with the pine at each stand. The shrub species pairs; Rhododendron Yedoense var. poukhanenae/Quercus serrata, Rhododendron mucronulatum var. ciliatum/Lespedeza intermedia were significantly negatively associated from 1m to 4m dimensional block sizes but became significantly positively associated from 8m sized blocks on. On the other hand the shrub species pairs; Lespedeza intermedia/Robinia Pseudoacacia, and Lespedeza bicolor var, japonica/Lespedeza intermedia were also significnalty negatively associated from 1m to 8m sized blocks but became significantly positively associated from 16m sized blocks on. The associational pattern between Rhododendron mucronul tun var. poukhanenae and Lespedeza intermedia was not consistent throughout the stands. In some stands negative associations were observed throughout the blocks except NS 32. From these observatons micro-edaphic variation within the pine stands seems not to be great enough to cause distributinal difference of pine trees within the ten pine stands. Among each species and pine seedings, however, the edaphic variation within the pine stands may be great enought to cause distributional variation.

  • PDF

Pollen analysis of alpine wetlands on Mt. Jeombong in Gangwon-do, South Korea and climate change during the late Holocene (점봉산 고산습지의 화분분석과 홀로세 후기 기후변화)

  • Yoon, Soon-Ock;Kim, Minji;Hwang, Sangill
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.4
    • /
    • pp.101-115
    • /
    • 2013
  • 11 alpine wetlands at the upper reaches of Bangtae River on a high flat summit around Mt. Jeombong were found. Two core samples(JB-1 and JB-2) among them were collected in order to reconstruct paleovegetation history and climate change using pollen analysis. Pinus and Quercus dominated at the wetland of JB-2 with a deep water depth were developed from 1,700 yr BP to 1,000 yr BP of the pollen zone I. Subsequently Quercus dominated in the pollen zone II from 1,000 to 400 yr BP, and it is supposed that warm weather prevailed with oak climax forest corresponding to the Medieval Warm Period. Moreover, sphagnum grew densely in the alpine wetlands and the wetlands were extended widely on the summit around Mt. Jeombong with the beginning of subzoneIIc at JB-2. The pollen zone III from 400 yr BP to the present with an increase in Pinus and a decrease in Quercus suggests cold climates under the Little Ice Age. Moreover, human disturbances at JB-2 were more significant than those at JB-1, based on the increase in Pinus.

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF

Ecological Characteristics and Vegetation Structure Analysis of Eurya Japonica Community -Focusing on Busan Metropolitan City- (사스레피나무 군락의 생태적 특성 및 식생구조 분석 -부산광역시를 중심으로-)

  • Jang, Jung-Eun;Lee, Sang-Cheol;Choi, Song-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.2
    • /
    • pp.157-169
    • /
    • 2020
  • The purpose of this study is to investigate the ecological characteristics and vegetation structures of Eurya japonica in Busan. As a result of the TWINSPAN and DCA analysis, 89 plots of 100㎡ each were divided into 3 communities: Quercus serrata-Pinus densiflora-E. japonica community, Pinus thunbergii-E. japonica community, and P. thunbergii-Camellia japonica community. Community I consisted of the Quercus serrata-Pinus densiflora-E. japonica which was mainly located in the high altitude inland. While Q. serrata and P. densiflora competed in the tree layer, the dominant species of the understory layer was E. japonica. Since Carpinus tschonoskii, one of the climax species, was distributed evenly from shrub to tree layers, it was likely that deciduous oak trees or Carpinus tschonoskii would become dominant species in community I. In community I, E. japonica was found in higher altitude than the other evergreen broad-leaved tree and was expected to maintain their tree vigor even if the vegetation structure is converted into the deciduous forest. Community II, the P. thunbergii-E. japonica community, was predicted to maintain its tree vigor unless there were unexpected disturbance factors. Community III, consisting of P. thunbergii-C. japonica and located in Dongbaek Island, was under artificial management. In community III, P. thunbergii was the only species in the tree layer, while C. japonica was predominant in the understory layer. E. japonica and various evergreen broad-leaved tree species were present in the understory layer and shrub layer, which were unmanaged areas. Therefore, it is expected that unless C. japonica is continuously managed, E. japonica is likely to become the dominant species. There were also various evergreen broad-leaved species, such as Machilus thunbergii and Pittosporum tobira, present in the shrub layer. If the temperature continues to rise, the habitat is expected to become evergreen broad-leaved forests in the future as P. thunbergii community declines. The result of Pearson's correlation coefficient analysis of E. japonica and species appearing in 89 plots showed that 9 species were had a statistically significant relationship (p<0.05). Four species, including P. tobira and Q. dentata, had a positive correlation. Five species had a negative correlation, and C. japonica, which had the same ecological position as E. japonica, showed the most negative correlation at -0.384.