• Title/Summary/Keyword: Climatological trend

Search Result 31, Processing Time 0.023 seconds

Analysis of Influence on Galic Crops and Its Economical Value by Meteorological and Climatological Information (기상기후정보가 마늘 작물에 미치는 영향과 경제적 가치 분석)

  • Park, Seung Hye;Moon, Yun Seob;Jeong, Ok Jin;Kang, Woo Kyeong;Kim, Da Bin
    • Journal of the Korean earth science society
    • /
    • v.39 no.5
    • /
    • pp.419-435
    • /
    • 2018
  • The purpose of this study is to understand meteorological and climatological factors that have influence on the garlic product in Seosan and Taean, and to analyze the economic value according to the use of climatical information data for garlic farmers. The climatological characteristics and trends in this area are analyzed using the meteorological data at the Seosan local meteorological agency from 1984 to 2013, the national statistical data for the product of garlic from 1989 to 2013, and the scenario data for climate change (RCP 4.5 and 8.5) for the period from 2001 to 2100. The results are as follows. First, the condition of lower temperature for garlic growth in winter season is satisfied with the mean air temperature. The wind speed are lower and stronger in Seosan and Taean than other garlic area. The suitable condition for the growth of northern type of garlic shows the decreasing trend in the accumulated precipitation in May. However, the area of growing the northern type garlic in the future is likely diminished because mean air temperature, accumulated precipitation, and mean wind speed are strong in the harvest time of garlic. Second, the seedtime of the northern and southern type of garlic using climate change scenarios (RCP 4.5, 8.5) in Seosan and Taean is getting late as time passes. and the harvest time gets faster, which indicates s that the period of garlic cultivation becomes shorter from 50 days to around 90 in the next 100 years. Third, the beginning days of white rot and delia platura of garlic are estimated by applying to the meteorological algorithm using mean air temperature and soil humidity. Especially, the beginning day of white rot garlic is shown to be faster according to the scenarios of RCP 4.5 and RCP 8.5. Fourth, the product of garlic (kg/10a) shows a high correlation with the minimum air temperature of a wintering time, the mean wind speed of a wintering time, the accumulated precipitation of a corpulent time, and the mean relative humidity of corpulent time of garlic. On the other hand, the analysis of garlic product when using the meteorological information data in cultivating garlic in Seosan and Taean reveals that the economic value increases up to 9% in total.

Spatial Distribution of Precipitation Trends According to Geographical and Topographical Conditions (지리지형적 조건에 따른 강수량 추세 분포)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.5
    • /
    • pp.385-396
    • /
    • 2009
  • The spatial distribution of precipitation trends according to urbanization, geographical and topographical conditions have been studied. In this study, precipitation data from 1973 to 2006 were analyzed for 56 climatological stations including the Seoul metropolis in South Korea. In addition to annual average daily precipitation, monthly average daily precipitation in April, July, October and January were analyzed, considering seasonal effect. The geographical and topographical characteristics of these sites were examined using GIS analysis. Land use status of the study area was also examined to estimate the extent of urbanization. The study results indicate that annual average precipitation increased, and monthly average precipitation in April and October decreased, while those in January and July increased. Considering urbanization effect, annual average precipitation and monthly average precipitation in July increased; however, monthly average precipitation in January, April and October decreased. Furthermore, compared with urbanization rate and proximity to coast, average elevation of study area appeared to be the most close correlation with annual and monthly averages of precipitation trends.

Water Balance Change of Watershed by Climate Change (기후변화에 따른 유역의 물수지 변화)

  • Yang, Hea-Kun
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.3 s.120
    • /
    • pp.405-420
    • /
    • 2007
  • This study is intended to analyze and evaluate the effects of Seomjingang Dam and Soyanggang Dam Catchment on water circulation in order to examine water balance change of watershed by climate change. Obviously, air temperature and precipitation showed a gradually increasing trend for the past 30 years; evapotranspiration vary in areas and increasing annual average air temperature is not always proportional to increasing evapotranspiration. Based on Penman-FAO24, climatic water balance methods and measured values are shown to be significantly related with each other and to be available in Korea. It is certainly recognized that increasing annual rainfall volume leads to increasing annual runoff depth; for fluctuation in annual runoff rates, there are some difference in changes in measured values and calculated values. It is presumably early to determine that climate changes has a significant effect on runoff characteristic at dam catchment. It is widely known that climate changes are expected to cause many difficulties in water resources and disaster management. To take appropriate measures, deeper understanding is necessary for climatological conditions and variability of hydrology and to have more careful prospection and to accumulate highly reliable knowledge would be prerequisites for hydrometric network.

Estimation of Climatological Precipitation of North Korea by Using a Spatial Interpolation Scheme (지형기후학적 공간내삽에 의한 북한지역 강수기후도 작성)

  • Yun Jin-Il
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.1
    • /
    • pp.16-23
    • /
    • 2000
  • A topography-precipitation relationship derived from the southern part of Korean Peninsula was applied to North Korea where climate stations are few and widely separated. Two hundred and seventy seven rain gauge stations of South Korea were classified into 8 different groups depending on the slope orientation (aspect) of the region they are located. Monthly precipitation averaged over 10 year period (1986-1995) was regressed to topographical variables of the station locations. A 'trend precipitation' for each gauge station was extracted from the precipitation surface interpolated from the monthly precipitation data of 24 standard stations of the Korea Meteorological Administration and used as a substitute for y-axis intercept of the regression equation. These regression models were applied to the corresponding regions of North Korea, which were identified by slope orientation, to obtain monthly precipitation surface for the aspect regions. 'Trend precipitation' from the 10 year data of 27 North Korean standard stations was also used in the model calculation. Output grids for each aspect region were mosaicked to form the monthly and annual precipitation surface with a 1km$\times$1km resolution for the entire territory of North Korea. Spatially averaged annual precipitation of North Korea was 938 mm with the standard deviation of 246 mm.

  • PDF

Evaluation of Site-specific Potential for Rice Production in Korea under the Changing Climate (지구온난화에 따른 우리나라 벼농사지대의 생산성 재평가)

  • Chung, U-Ran;Cho, Kyung-Sook;Lee, Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.4
    • /
    • pp.229-241
    • /
    • 2006
  • Global air temperature has risen by $0.6^{\circ}C$ over the last one hundred years due to increased atmospheric greenhouse gases. Moreover, this global warming trend is projected to continue in the future. This study was carried out to evaluate spatial variations in rice production areas by simulating rice-growth and development with projected high resolution climate data in Korea far 2011-2100, which was geospatially interpolated from the 25 km gridded data based on the IPCC SRES A2 emission scenario. Satellite remote sensing data were used to pinpoint the rice-growing areas, and corresponding climate data were aggregated to represent the official 'crop reporting county'. For the simulation experiment, we used a CERES-Rice model modified by introducing two equations to calculate the leaf appearance rate based on the effective temperature and existing leaf number and the final number of leaves based on day-length in the photoperiod sensitive phase of rice. We tested the performance of this model using data-sets obtained from transplanting dates and nitrogen fertilization rates experiments over three years (2002 to 2004). The simulation results showed a good performance of this model in heading date prediction [$R^2$=0.9586 for early (Odaebyeo), $R^2$=0.9681 for medium (Hwasungbyeo), and $R^2$=0.9477 for late (Dongjinbyeo) maturity cultivars]. A modified version of CERES-Rice was used to simulate the growth and development of three Japonica varieties, representing early, medium, and late maturity classes, to project crop status for climatological normal years between 2011 and 2100. In order to compare the temporal changes, three sets of data representing 3 climatological years (2011-2040, 2041-2070, and 2071-2100) were successively used to run the model. Simulated growth and yield data of the three Japonica cultivars under the observed climate for 1971-2000 was set as a reference. Compared with the current normal, heading date was accelerated by 7 days for 2011-2040 and 20 days for 2071-2100. Physiological maturity was accelerated by 15 days for 2011-2040 and 30 days for 2071-2100. Rice yield was in general reduced by 6-25%, 3-26%, and 3-25% per 10a in early, medium, and late maturity classes, respectively. However, mid to late maturing varieties showed an increased yield in northern Gyeonggi Province and in most of Kwangwon Province in 2071-2100.

Mapping Monthly Temperature Normals Across North Korea at a Landscape Scale (북한지역 평년의 경관규모 기온분포도 제작)

  • Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.1
    • /
    • pp.28-34
    • /
    • 2011
  • This study was carried out to estimate monthly mean of daily maximum and minimum temperature across North Korea at a 30 m grid spacing for a climatological normal year (1971-2000) and the 4 decadal averages (1971-1980, 1981-1990, 1991-2000, and 2001-2010). A geospatial climate interpolation method, which has been successfully used to produce the so-called 'High-Definition Digital Climate Maps' (HD-DCM), was used in conjunction with the 27 North Korean and 17 South Korean synoptic data. Correction modules including local effects of cold air drainage, thermal belt, ocean, solar irradiance and urban heat island were applied to adjust the synoptic temperature data in addition to the lapse rate correction. According to the final temperature estimates for a normal year, North Korean winter is expected colder than South Korean winter by $7^{\circ}C$ in average, while the spatial mean summer temperature is lower by $3^{\circ}C$ than that for South Korea. Warming trend in North Korea for the recent 40 years (1971-2010) was most remarkable in spring and fall, showing a 7.4% increase in the land area with 15 or higher daily maximum temperature for April.

Weather and Climatic Environment of Seoul Area in South Korea during 1623~1800, Reconstructed from 'The Daily Records of Royal Secretariat of Joseon Dynasty(承政院日記)' (1623~1800년 서울지역의 기상기후 환경 -'승정원일기'를 토대로-)

  • LEE, Joon Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.4
    • /
    • pp.856-874
    • /
    • 2016
  • This study aims to figure out the weather and climate environment of Seoul area in S. Korea during 1623~1800, which has not been studied so far, by using daily records of weather conditions and meteorological phenomena in the Daily Records of Royal Secretariat of Joseon Dynasty(承政院日記) together with records of abnormal weather conditions and natural disasters in the Annals of the Joseon Dynasty(朝鮮王朝實錄). During 1500~1760 as a period of the Little Ice Age it was generally cold and dry, particularly cool summers of Seoul area. Changes in weather conditions and meteorological phenomena and climate changes appeared prominently at around 1650, 1710, 1770. The annual numbers of rain days and of snow days began to change largely in the 1640s. The rain(and snow) days reduced significantly in the 1710s~1650s, but increased sharply in the 1710s and later. The rain days in summer rapidly increased after the late 1710s, while the snow days greatly reduced after the mid 1770s. The cloudy days around the 1710s greatly reduced in summer, while slightly increased in winter. The hail days increased significantly in the late 1720s and lasted until the 1760s. The fog days began to reduce after 1770 to the fewer days than the climatic normals of 1981~2010. These times are overall consistent with findings of historical climatological cross-checking data and geophysical biological proxy data, accompanied by a trend of relatively enhanced colder and drier of Seoul area.

  • PDF

The Distribution of Total Ozone Amounts and Intercomparison of their characteristics Derived from the TOVS Observations over the Korean Peninsula (TOVS로 부터 도출한 한반도 부근의 전오존량 분포 및 그 특성 비교)

  • 정효상;주상원
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.3
    • /
    • pp.23-31
    • /
    • 1995
  • The International TOVS(TIROS Operational Vertical Sounders) Process Package(ITPP-VI), which has been installed at Korea Meteorological Administration(KMA), is only for a global usage to need a surface data to generate atmospheric soundings and total ozone amount. If the initial input process in the ITTP-VI is not modified, it takes climatic surface data for producing sounding data and total ozone amount in general. KMA is trying to improve the quality of TOVS total ozone amount using real-time synoptoc observation in various ways instead of climatological data because this retrieved data in the new scheme for total ozone presently used at the KMA may critically provide to analyze the long-term trend of ozone structure over the Korean peninsula. Two cases in this study show that TOVS retrieved total ozone amounts used by synoptic surface observations can delineate more detailed ozone structures rather than those used by climate surface data. The distribution of TOVS retrieved ozone amount fields with the synoptic surface analyzed data(TOVS-GPV) show more in detail relatively than those with the climate data(TOVS-CLIMAT) as expected. In addition, the collocated inter-comparisons of TOVS-GPV with TOVS-CLIMAT, TOMS observations and Dobsometer observations are performed statistically. TOVS-GPV fields with TOMS observations show smaller bias relatively than TOVS-CLIMAT and also reduce the differences.

Improvement in Rice Cultural Techniques Against Unfavorable Weather Condition (기상재해와 수도재배상의 대책)

  • Ryu, I.S.;Lee, J.H.;Kwon, Y.W.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.385-397
    • /
    • 1982
  • The climatic impacts have been the environmental constraints with soil characteristics to achieve self sufficiency of food production in Korea. In this paper, the distribution and appearance of impacts and the changes in climatological status due to recent trend of early transplanting of rice are widely discussed to derive some countermeasures against the impacts, being focussed on cultural A long term analysis of the climatic impact appearances of the last 74 years showed that drought, strong wind, flood, cold spell and frost were the major impacts. Before 1970's, the drought damage was the greatest among the climatic impacts; however, the expansion and improvement of irrigation and drainage system markedly decreased the damage of drought and heavy rain. The appearance of cold damage became more frequent than before due to introduction of early transplanting for more thermophilic new varieties. Tongillines which were from Indica and Japonica crosses throw more attention to cold damage for high yields to secure high temperature in heading and ripening stages and lead weakness to cold and drought damage in early growth stage after transplanting. The plants became subject to heavy rain in ripening stage also. For the countermeasures against cold damage, the rational distribution of adequate varieties according to the regional climatic conditions and planting schedule should be imposed on the cultivation. A detoured water way to increase water temperature might be suggestable in the early growth stage. Heavy application of phosphate to boost rooting and tillering also would be a nutritional control method. In the heading and ripening stages, foliar application of phosphate and additional fertilization of silicate might be considerable way of nutritional control. Since the amount of solar radiation and air temperature in dry years were high, healthy plants for high yield could be obtained; therefere, the expansion of irrigation system and development of subsurface water should be performed as one of the national development projects. To minimize the damage of strong wind and rainfall, the rational distribution of varieties with different growing periods in the area where the damage occurred habitualy should be considered with installation of wind breaks. Not only vertical windbreaks but also a horizontal wind break using a net might be a possible way to decrease the white heads in rice field by dry wind. Finally, to establish the integrated countermeasures against the climatic impacts, the detailed interpretation on the regional climatic conditions should be conducted to understand distribution and frequency of the impacts. The expansion of observation net work for agricultural meteorology and development of analysis techniques for meteorological data must be conducted in future together with the development of the new cultural techniques.

  • PDF

A Study on the Estimation of Monthly Average River Basin Evaporation (월(月) 평균유역증발산량(平均流域蒸發散量) 추정(推定)에 관(關)한 연구(硏究))

  • Kim, Tai Cheol;Ahn, Byoung Gi
    • Korean Journal of Agricultural Science
    • /
    • v.8 no.2
    • /
    • pp.195-202
    • /
    • 1981
  • The return of water to the atmosphere from water, soil and vegetation surface is one of the most important aspects of hydrological cycle, and the seasonal trend of variation of river basin evaporation is also meaningful in the longterm runoff analysis for the irrigation and water resources planning. This paper has been prepared to show some imformation to estimate the monthly river basin evaporation from pan evaporation, potential evaporation, regional evaporation and temperature through the comparison with river basin evaporation derived from water budget method. The analysis has been carried out with the observation data of Yongdam station in the Geum river basin for five year. The results are summarized as follows and these would be applied to the estimation of river basin evaporation and longterm runoff in ungaged station. 1. The ratio of pan evaporation to river basin evaporation ($E_w/E_{pan}$) shows the most- significant relation at the viewpoint of seasonal trend of variation. River basin evaporation could be estimated from the pan evaporation through either Fig. 9 or Table-7. 2. Local coefficients of cloudness effect and wind function has been determined to apply the Penman's mass and energy transfer equation to the estimation of river basin evaporation. $R_c=R_a(0.13+0.52n/D)$ $E=0.35(e_s-e)(1.8+1.0U)$ 3. It seems that Regional evaporation concept $E_R=(1-a)R_C-E_p$ has kept functional errors due to the inapplicable assumptions. But it is desirable that this kind of function which contains the results of complex physical, chemical and biological processes of river basin evaporation should be developed. 4. Monthly river basin evaporation could be approximately estimated from the monthly average temperature through either the equation of $E_w=1.44{\times}1.08^T$ or Fig. 12 in the stations with poor climatological observation data.

  • PDF