• Title/Summary/Keyword: Climate shifts

Search Result 57, Processing Time 0.031 seconds

Identification of 1H-NMR characteristics for black ginger specimens from different places of origin

  • Kwon, Hyeok;Lee, Sojung;Hong, Sukyung;Kiyonga, Alice Nguvoko;Yi, Jong-Jae;Jung, Kiwon;Son, Woo Sung
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.4
    • /
    • pp.93-97
    • /
    • 2019
  • Black ginger (Kaempferia parviflora) is a short-lived ginger plant with dark purple colored root and is known to be effective in treating diabetes and obesity. To find out the difference in the characteristics of the black ginger according to the variety of production, 1D proton NMR experiments were performed on 4 types of black gingers from different regions. The NMR spectra of all black ginger showed the characteristic peaks of the polymethoxy flavone compounds, and the chemical shifts and intensity of peaks showed slight differences depending of the type of black ginger implying the difference in molecular environment. These initial NMR experiments can be applied to the identification of the diversity of black ginger in physiological function according to the climate of regions using SNIF-NMR (Site-specific Natural Isotope Fractionation studied by NMR).

Selection of Turfgrass Species and Cultivars for Hydroseeding on Road Side Slope Areas (도로비탈면의 종자분사공법용 잔디종류의 선택)

  • 주영규
    • Asian Journal of Turfgrass Science
    • /
    • v.9 no.3
    • /
    • pp.173-185
    • /
    • 1995
  • Hydroseeding technique is a very popular method of revegetating slope areas through the control of soil erosion and stability by seeding grasses. This study was conducted to select turfgrass species and cultivars for hydroseeding. Experiment plots were established on various soil types and environmental conditions at Singar-Ansan high-way construction site. The investigation was designed in three cutting, one back-filling and other three spare sites with various seed mixtures. Results indicated that combinations of seed mixtures influenced seed germination and rates of surface cover. In a view of long term, vegetation shifts should be influenced by characters of slopes and micro-climate conditions. Hydroseeding did not show good results on rocky slope areas. Revegetation was only going on where there had soil. The combination of seed mixture with a higher rate of perennial ryegrass had relatively good revegetation with faster germination and seedling growth. Improved turf-type tall fescue Arid ⓡ and Falcon ⓡ seemed to have good environ-mental adaptation and drought tolerance. Wild or old type cultivars showed relatively slow green-up in spring and growth rates at the next year of seeding. For the harmonious landscaping with surrounding area, the combination of native grass mixture with cool-season grasses had good results. Slow and low revegetation rate at hack-filling site seemed to be caused by the poor development of capillary tubes in sub-soil. It was shown that a high correlation between seed germination and revegetation rate, and between three-month later coverage rate and final rate. The evaluation of coverage rate after three month seems to he acceptable to decide the accomplishment of hydroseeding results on rode side slopes.

  • PDF

Developing a performance index for efficient improving techniques and implement of Smart Water Management (스마트물관리기술 평가툴 개발)

  • Lim, Kwangsuop;Lee, Namsoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.578-578
    • /
    • 2016
  • In the past decade, many countries developed varies promising theories, methodologies and technologies for water resources management, such as Smart Water in Korea, eWater in Australia, Intelligent Water in Untied States, and Internet of Water in China. It is no exaggeration to say that Smart Water Management(SWM) will have a major role to play in addressing the global water challenges in the background of climate change, population growth and rapid urbanization. As a result, we can see major shifts taking place in the structure of the water industry, with a need for new approaches, skills, and water management policies. All these point towards a brighter future for the smart water sector and a new water paradigm, with applications and potential throughout the water cycle. However, each countries have their technology and industry standard system which may swift similar innovation and technology into different channels. In that sense, developing a common performance index and standard docking adapter for assessing Smart Water Management Initiatives(SWMI) is crucial for drawing a linkage of SWMI and SWMs to a way to implement advanced technology across Asia and Pacific. The performance index and standard docking adapter will facilitate quantitative and qualitative effects of utilized SWM techniques.

  • PDF

The Climate of Korea in the View of the Climatic Year (연후(年候)에서 본 한국(韓國)의 기후(氣候))

  • Kang, Man-Suk
    • Journal of the Korean association of regional geographers
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 1997
  • The climatic characteristics of Korea are analized with the data observed from 1972 to 1995 in 66 stations, using the climatic year method expressed by the $K{\ddot{o}}ppen's$ system of climatic classification. The climate of Korea is composed of the six climatic year types : Cfa, Cwa, Cwb, Dfa, Dwa and Dwb type. The Cwa and Dwa type occupy 95% occurrence frequency. The Cwa climatic year type predominates in the greater part of the Southern Area, the east slopes of the Taebaek Range and Cheju-do, the Dwa type does in Yongso Area and the northeastern part of Kyonggi Province. and the Cfa type does in Ullung-do. Such dominant climatic year regions become the stable climatic regions, while the regions where the various climatic types appear become the unstable climatic regions which are distributed in the northern part of the Southern Area and in the southern part of the Central Area owing to the shifts of the border between C type and D type. The border between C and D type is located in the Central Inland Area in the first half of the 1990's which the Cwa type predominates most. On the other hand the border is located in the middle part of the Southern Area in the first half of the 1980's which the Dwa type prevails most. Therefore the extents of the climatic year regions vary each year. In the interannual change of the main climatic year types, the Cwa type shows the increasing trend, while the Cfa and Dwa type reflets the decreasing tendency. The extending trend of the Cwa climatic year region appears during the period of the first half of the 1970's and the period between the latter half of the 1980's and the first half of the 1990's centering around the Southern Area. The Dwa climatic year region which was predominant in the Central Area in the first half of the 1980's has been reduced up till the recent years.

  • PDF

A Practical Application and Development of Carbon Emission Factors for 4 Major Species of Warm Temperate Forest in Korea (난대지역 주요 4개 수종의 탄소배출계수 개발 및 적용)

  • Son, Yeong Mo;Kim, Rae Hyun;Kang, Jin Taek;Lee, Kwang Su;Kim, So Won
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.4
    • /
    • pp.593-598
    • /
    • 2014
  • In this study, we developed the carbon emission factors for 4 major species of warm-temperate region in Korea, and tried to provide their carbon emissions and removals estimates using these carbon emission factors. We selected Castanopsis cuspidata, Camellia japonica, Quercus acuta and Quercus glauca as target species and derived their carbon emission factors. The basic wood density that serve as one of the carbon emission factors were 0.583 for Castanopsis cuspidata, 0.657 for Camellia japonica, 0.833 for Quercus acuta and 0.763 for Quercus glauca and their uncertainties ranged from 5.3 to 17.9%. Biomass expansion factors were calculated as well: 1.386 for Castanopsis cuspidata, 2.621 for Camellia japonica, 1.701 for Quercus acuta and 2.123 for Quercus glauca and associated uncertainties varied from 14.7 to 30.5%. Lastly root-shoot ratios for each species were also determined: 0.454 for Castanopsis cuspidata, 0.356 for Camellia japonica, 0.191 for Quercus acuta and 0.299 for Quercus glauca with the uncertainties lying within a range from 19.8 to 35.7%. These three carbon emission factors including basic wood density had the uncertainties of less than 40% recommended by FAO. Therefore the application of country-specific emission factors seemed to provide quite accurate estimates of carbon emissions and removals. The estimation of the carbon stored in the 4 species were also conducted which amounted to $186.10tCO_2/ha$ for Castanopsis cuspidata, $280.63tCO_2/ha$ for Camellia japonica, $344.04tCO_2/ha$ for Quercus acuta and $278.91tCO_2/ha$ for Quercus glauca and their annual carbon removals were $6.65tCO_2/ha/yr$, $6.25tCO_2/ha/yr$, $11.70tCO_2/ha/yr$ and $12.29tCO_2/ha/yr$, respectively. This systematic assessment of forest resources can be a reliable source of information for managing evergreen broadleaved forest in warm temperate regions and thus serve as useful data for effective decision-making to address vegetation zone shifts due to climate change.

A study on the Energy resource in School Buildings with the Changes of Educational Facilities Standard (교육 시설기준 변화에 따른 학교건축물의 에너지원 변화에 관한 연구)

  • Kim, Tae-Woo;Lee, Kang-Guk;Hong, Won-Hwa
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.73-80
    • /
    • 2010
  • Since the Korean War, Korea has experienced modernization. The population increase by baby booming has asked for more space for educational facilities. In such a situation, the purpose of educational facilities was to accommodate continuously increasing students, rather than seeking for quantitative demands. In addition, in accordance with social changes, educational shifts were required. After the revision of the seventh national curriculum in education in 1997, the school buildings became varied. The design of buildings in accordance with educational curriculum has been improved, but still lack of forming comfortable environment and considering energy efficiency in school buildings. For the improvement of educational environments, educational media such as TV and computers have been provided, and energy systems, including heating and cooling systems, has been continuously increased. As a result, it appeared that energy use in school buildings and facilities has been steadily increased and that the structure of energy consumption has been also changed, especially with regard to electricity use. Living in the 21st century, human beings face global environmental issues, such as global warming, geographical climate changes, and ozone destruction that are the consequences of fossil energy use. Therefore, even in industrial areas, considering a counterplan for low energy use is being paid attention. Starting with Kyoto Protocol in 1992, people try to decrease carbon dioxide and to develop alternative energies (i.e. natural energy); for example, solar energy, wind force, terrestrial heat, and water power. Advanced countries already set up a criterion for $CO_2$ decrease ranging from office buildings to residential houses and also propose alternatives for the $CO_2$ decrease. However, there is no such a plan for low energy use and $CO_2$ decrease in school facilities, and any research on the actual conditions was not accomplished. Thus, this study examines energy demand in classrooms that take up a large portion of energy demand in school building structure.

Building a Nonlinear Relationship between Air and Water Temperature for Climate-Induced Future Water Temperature Prediction (기후변화에 따른 미래 하천 수온 예측을 위한 비선형 기온-수온 상관관계 구축)

  • Lee, Khil-Ha
    • Journal of Environmental Policy
    • /
    • v.13 no.2
    • /
    • pp.21-38
    • /
    • 2014
  • In response to global warming, the effect of the air temperature on water temperature has been noticed. The change in water temperature in river environment results in the change in water quality and ecosystem, especially Dissolved Oxygen (DO) level, and shifts in aquatic biota. Efforts need to be made to predict future water temperature in order to understand the timing of the projected river temperature. To do this, the data collected by the Ministry of Environment and the Korea Meteororlogical Administration has been used to build a nonlinear relationship between air and water temperature. The logistic function that includes four different parameters was selected as a working model and the parameters were optimized using SCE algorithm. Weekly average values were used to remove time scaling effect because the time scale affects maximum and minimum temperature and then river environment. Generally speaking nonlinear logistic model shows better performance in NSC and RMSE and nonlinear logistic function is recommendable to build a relationship between air and water temperature in Korea. The results will contribute to determine the future policy regarding water quality and ecosystem for the decision-driving organization.

  • PDF

Analysis on Climate Zone Shifts over Asia under Global Warming using CMIP6 Projections (CMIP6 기반 전지구 기온상승에 따른 아시아 지역 기후대 변화분석)

  • Kim, Jeong-Bae;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.37-37
    • /
    • 2021
  • 아시아 지역은 전 세계 인구의 60%가 집중되어 있으며, 지역 내에는 다양한 기후대가 혼재되어 있다. 통상, 기후대는 지역의 전반적인 기후 및 가용 수자원 특성을 파악하는데 유용하게 활용된다. 지구온난화의 영향으로 지역의 기후변동성은 심화되고 있으며, 이는 급격한 기후대 이동을 초래할 것으로 전망된다. 본 연구에서는 AR6 기후변화시나리오를 기반으로 전지구 기온상승에 따른 아시아 지역의 기후대 변화특성을 분석하였다. CMIP6 GCMs 및 공유사회경제경로(SSP1-2.6 및 SSP5-8.5) 시나리오를 활용하여 앙상블 기후변화시나리오를 산출하였다. 관측 및 시나리오 자료를 활용하여 산업화 이전 대비 미래 전지구 기온상승(1.5℃~5.0℃) 특성을 추정하였다. 통계적상세화 기법을 적용하여 기후변화시나리오를 상세화하고, 쾨펜 기후구분법을 적용하여 기후특성에 따라 기후대를 구분하였다. 이후, 개별 전지구 기온상승 조건 하에서 아시아 지역의 기후대 분포 및 변화특성을 분석하였다. 전지구 기온이 상승함에 따라 아시아 지역 전반에서 기후대 변화가 가속화되는 것으로 확인되었으며, 이는 모든 SSPs 및 GCMs 시나리오 하에서 동일하였다. 전지구 기온 상승폭은 SSP1-2.6 대비 SSP5-8.5 시나리오 하에서 크게 나타났으며, 동일한 1.5℃ 및 2.0℃ 기온상승 조건에 도달하는 시기도 SSP5-8.5 시나리오에서 현저히 빠른 것으로 분석되었다. 한편, 기후대 이동이 나타나는 지역은 전지구 기온이 상승함에 따라 증가하였으며 5.0℃ (SSP5-8.5) 기온상승 조건 하에서 변화량이 가장 큰 것으로 분석되었다. 다만, 동일한 기온상승 조건 하에서는 SSP 시나리오와 관계없이 기후대 변화 면적 및 공간적 변화패턴이 유사하였다. 기온상승에 따라 아시아 지역 내 열대기후와 건조기후 지역은 확대되는 반면, 온대 및 한랭, 극기후 지역은 줄어들 것으로 전망되었다. 본 연구에서 도출된 전지구 기온상승 조건 별 아시아 지역의 미래 기후대 변화특성은 지역별 기후변화 영향평가 시 기초자료로 활용될 수 있다.

  • PDF

Development of Flooding and Overflow Simulation Technology for Rainwater Infiltration Storage Block Placement (빗물침투저류블록 설치 최적지 선정을 위한 침수범람 시뮬레이션 기술 개발)

  • Kim, Seongpyo;Ryu, Jungrim;Kim, Hojin;Choi, Heeyong;Lee, Taegyu;Choi, Hyeonggil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.227-238
    • /
    • 2024
  • This study addresses the escalating flood damages prompted by recent climate shifts characterized by extreme weather events and proposes rainwater infiltration blocks as a potential solution. Recognizing the limitations inherent in existing inundation simulation methods, we advocate for the integration of novel functionalities, particularly leveraging drone technology. Our research endeavors encompass experimental assessments of inundation and flooding simulation technologies. These evaluations are conducted within areas where rainwater infiltration storage blocks have been implemented, juxtaposed against existing programs utilizing Digital Elevation Models(DEM) and Digital Surface Models(DSM). Through this comparative analysis and a meticulous scrutiny of the adaptability of inundation and flooding simulation to real-world deployment scenarios, we ascertain the efficacy of the simulation program as a decision-making tool for identifying optimal sites for rainwater infiltration storage block installation.

Vertical distribution and vascular plants in the Gakho mountain (Yeongdong-gun), Korea (각호산(영동군)의 관속식물과 수직분포)

  • Jung-Hyun Kim;Jin-Suk Kim;Sookyung Shin;Tae-Im Heo;Young Hoon Kim;Sunghyuk Park;Jin-Seok Kim
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.1
    • /
    • pp.60-88
    • /
    • 2023
  • This study was conducted to investigate the vertical distribution and vascular plants in the Gakho mountain. Form the results of three field surveys from May 2022 to September 2022, a total of 478 total taxa, representing 426 species, 11 subspecies, 35 varieties, four forms, and two hybrids were identified, which were categorized in 282 genera and 94 families. We identified the elevational distribution ranges of 398 taxa of vascular plants. Among them, 19 taxa were endemic to Korea, one taxon was identified as a rare plant. The floristic target plants amounted to 72 taxa, specifically two taxa of grade V, two taxa of grade IV, 16 taxa of grade III, 27 taxa of grade II, and 25 taxa of grade I. Further, 71 taxa were identified as northern lineage plants. A total of 19 taxa of alien plants were identified, with a Naturalized Index of 4.0%, an Urbanization Index of 6.6%, and three plants that disturbed the ecosystem. The result of analyzing the pattern of species richness showed a reversed hump shape with minimum richness at mid-high elevation. A cluster analysis showed a high degree of similarity between adjacent elevation sections that are geographically adjacent with similar habitat environments. Warmth index in the Gakho mountain ranged from 57.2℃·month to 84.2℃·month. Our results provide basic data on vascular plants and valuable information on elevational distribution ranges of current plant species in the Gakho mountain, which could serve as a baseline for comparison of the shifts in elevation under future climate change.