• 제목/요약/키워드: Climate index

검색결과 934건 처리시간 0.027초

동아시아지역의 CMAQ 대류권 오존 모의에 화학적 측면 경계조건이 미치는 효과 (The Effect of the Chemical Lateral Boundary Conditions on CMAQ Simulations of Tropospheric Ozone for East Asia)

  • 홍성철;이재범;최진영;문경정;이현주;홍유덕;이석조;송창근
    • 한국대기환경학회지
    • /
    • 제28권5호
    • /
    • pp.581-594
    • /
    • 2012
  • The goal of this study is to investigate the effects of the chemical lateral boundary conditions (CLBCs) on Community Multi-scale Air Quality (CMAQ) simulations of tropospheric ozone for East Asia. We developed linking tool to produce CLBCs of CMAQ from Goddard Earth Observing System-Chemistry (GEOS-Chem) as a global chemistry model. We examined two CLBCs: the fixed CLBC in CMAQ (CLBC-CMAQ) and the CLBC from GEOS-Chem (CLBC-GEOS). The ozone fields by CMAQ simulation with these two CLBCs were compared to Tropospheric Emission Spectrometer (TES) satellite data, ozonesonde and surface measurements for May and August in 2008. The results with CLBC-GOES showed a better tropospheric ozone prediction than that with CLBC-CMAQ. The CLBC-GEOS simulation led to the increase in tropospheric ozone concentrations throughout the model domain, due to be influenced high ozone concentrations of upper troposphere and near inflow western and northern boundaries. Statistical evaluations also showed that the CLBC-GEOS case had better results of both the index of Agreement (IOA) and mean normalized bias. In the case of IOA, the CLBC-GEOS simulation was improved about 0.3 compared to CLBC-CMAQ due to the better predictions for high ozone concentrations in upper troposphere.

SWAT 모형을 이용한 기후와 식생 활력도 변화가 수자원에 미치는 영향 평가 (Assessment of Climate and Vegetation Canopy Change Impacts on Water Resources using SWAT Model)

  • 박민지;신형진;박종윤;강부식;김성준
    • 한국농공학회논문집
    • /
    • 제51권5호
    • /
    • pp.25-34
    • /
    • 2009
  • The objective of this study is to evaluate the future potential climate and vegetation canopy change impact on a dam watershed hydrology. A $6,661.5\;km^2$ dam watershed, the part of Han-river basin which has the watershed outlet at Chungju dam was selected. The SWAT model was calibrated and verified using 9 year and another 7 year daily dam inflow data. The Nash-Sutcliffe model efficiency ranged from 0.43 to 0.91. The Canadian Centre for Climate Modelling and Analysis (CCCma) Coupled Global Climate Model3 (CGCM3) data based on Intergovernmental Panel on Climate Change (IPCC) SRES (Special Report Emission Scenarios) B1 scenario was adopted for future climate condition and the data were downscaled by artificial neural network method. The future vegetation canopy condition was predicted by using nonlinear regression between monthly LAI (Leaf Area Index) of each land cover from MODIS satellite image and monthly mean temperature was accomplished. The future watershed mean temperatures of 2100 increased by $2.0^{\circ}C$, and the precipitation increased by 20.4 % based on 2001 data. The vegetation canopy prediction results showed that the 2100 year LAI of deciduous, evergreen and mixed on April increased 57.1 %, 15.5 %, and 62.5% respectively. The 2100 evapotranspiration, dam inflow, soil moisture content and groundwater recharge increased 10.2 %, 38.1 %, 16.6 %, and 118.9 % respectively. The consideration of future vegetation canopy affected up to 3.0%, 1.3%, 4.2%, and 3.6% respectively for each component.

기후변화에 따른 한반도 참식나무 생육지 예측과 영향 평가 (Habitat prediction and impact assessment of Neolitsea sericea (Blume) Koidz. under Climate Change in Korea)

  • 윤종학;카츠히로 나카오;김중현;김선유;박찬호;이병윤
    • 환경영향평가
    • /
    • 제23권2호
    • /
    • pp.101-111
    • /
    • 2014
  • The research was carried out in order to find climate factors which determine the distribution of Neolitsea sericea, and the potential habitats (PHs) under the current climate and three climate change scenario by using species distribution models (SDMs). Four climate factors; the minimum temperature of the coldest month (TMC), the warmth index (WI), summer precipitation (PRS), and winter precipition (PRW) : were used as independent variables for the model. Three general circulation models under A1B emission scenarios were used as future climate scenarios for the 2050s (2040~2069) and 2080s (2070~2099). Highly accurate SDMs were obtained for N. sericea. The model of distribution for N. sericea constructed by SDMs showed that minimum temperature of the coldest month (TMC) is a major climate factor in determining the distribution of N. sericea. The area above the $-4.4^{\circ}C$ of TMC revealed high occurrence probability of the N. sericea. Future PHs for N. sericea were projected to increase respectively by 4 times, 6.4 times of current PHs under 2050s and 2080s. It is expected that the potential of N. sericea habitats is expanded gradually. N. sericea is applicable as indicator species for monitoring in the Korean Peninsula. N. sericea is necessary to be monitored of potential habitats.

CLIMATE CHANGE IMPACT OVER INDIAN AGRICULTURE - A SPATIAL MODELING APPROACH

  • Priya, Satya;Shibasaki, Ryosuke
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.107-114
    • /
    • 1999
  • The large-scale distribution of crops Is usually determined by climate. We present the results of a climate-crop prediction based on spatial bio-physical process model approach, implemented in a GIS (Geographic Information System) environment using several regional and global agriculture-environmental databases. The model utilizes daily climate data like temperature, rainfall, solar radiation being generated stocastically by in-built model weather generator to determine the daily biomass and finally the crop yield. Crops are characterized by their specific growing period requirements, photosynthesis, respiration properties and harvesting index properties. Temperature and radiation during the growing period controls the development of each crop. The model simulates geographic/spatial distribution of climate by which a crop-growing belt can also be determined. The model takes both irrigated and non-irrigated area crop productivity into account and the potential increase in productivity by the technical means like mechanization is not considered. All the management input given at the base year 1995 was kept same for the next twenty-year changes until 2015. The simulated distributions of crops under current climatic conditions coincide largely with the current agricultural or specific crop growing regions. Simulation with assumed weather generated derived climate change scenario illustrate changes in the agricultural potential. There are large regional differences in the response across the country. The north-south and east-west regions responded differently with projected climate changes with increased and decreased productivity depending upon the crops and scenarios separately. When water was limiting or facilitating as non-irrigated and irrigated area crop-production effects of temperature rise and higher $CO_2$ levels were different depending on the crops and accordingly their production. Rise in temperature led to yield reduction in case of maize and rice whereas a gain was observed for wheat crop, doubled $CO_2$ concentration enhanced yield for all crops and their several combinations behaved differently with increase or decrease in yields. Finally, with this spatial modeling approach we succeeded in quantifying the crop productivity which may bring regional disparities under the different climatic scenarios where one region may become better off and the other may go worse off.

  • PDF

경기북부지역 정밀 수치기후도 제작 및 활용 - I. 수치기후도 제작 (Development and Use of Digital Climate Models in Northern Gyunggi Province - I. Derivation of DCMs from Historical Climate Data and Local Land Surface Features)

  • 김성기;박중수;이은섭;장정희;정유란;윤진일
    • 한국농림기상학회지
    • /
    • 제6권1호
    • /
    • pp.49-60
    • /
    • 2004
  • Northern Gyeonggi Province(NGP), consisting of 3 counties, is the northernmost region in South Korea adjacent to the de-militarized zone with North Korea. To supplement insufficient spatial coverage of official climate data and climate atlases based on those data, high-resolution digital climate models(DCM) were prepared to support weather- related activities of residents in NGP Monthly climate data from 51 synoptic stations across both North and South Korea were collected for 1981-2000. A digital elevation model(DEM) for this region with 30m cell spacing was used with the climate data for spatially interpolating daily maximum and minimum temperatures, solar irradiance, and precipitation based on relevant topoclimatological models. For daily minimum temperature, a spatial interpolation scheme accommodating the potential influences of cold air accumulation and the temperature inversion was used. For daily maximum temperature estimation, a spatial interpolation model loaded with the overheating index was used. Daily solar irradiances over sloping surfaces were estimated from nearby synoptic station data weighted by potential relative radiation, which is the hourly sum of relative solar intensity. Precipitation was assumed to increase with the difference between virtual terrain elevation and the DEM multiplied by an observed rate. Validations were carried out by installing an observation network specifically for making comparisons with the spatially estimated temperature pattern. Freezing risk in January was estimated for major fruit tree species based on the DCMs under the recurrence intervals of 10, 30, and 100 years, respectively. Frost risks at bud-burst and blossom of tree flowers were also estimated for the same resolution as the DCMs.

기후 변화를 고려한 수자원 관리 기법 (Incorporating Climate Change Scenarios into Water Resources Management)

  • 김영오
    • 한국수자원학회논문집
    • /
    • 제31권4호
    • /
    • pp.407-413
    • /
    • 1998
  • 본 연구는 기후 변화가 수자원 시스템에 미치는 영향에 대한 최근의 연구 동향을 살펴보고, 그 중의 한 기법을 미국의 Skagit 시스템에 실례로 적용해 보았다. 적용된 기법에서는, 기후변화로 인하여 Skagit 시스템의 월별 유입량의 평균과 분산이 $\pm$5% 증가한다고 가정하였다. 평균과 분산이 변화한 각각의 경우에 대하여 월별 운영률을 추계학적 동적 계획법으로 구하고 기후 변화가 없다고 가정한 경우의 운영률과 비교하였다. 그 결과 Skagit 시스템의 월별 운영률은 유입량 분산의 변화보다는 평균의 변화에 더욱 민감함을 보였다. 또, 결정된 운영률들은 모의 발생된 유입량 시나리오들을 이용하여 그 효율성을 비교하였는데, 운영률의 평가 지표로는 평균 연간 수익을 사용하였다. 산출된 운영률 중 가장 최선의 운영률을 선택하기 위하여, 본 연구에서는 Bayesian 결정 기법을 간단한 예로 설명하였다.

  • PDF

기초 및 광역지자체 기후변화 취약성 평가를 위한 웹기반 지원 도구(VESTAP) 개발 (Development of Web-Based Supporting Tool (VESTAP) for Climate Change Vulnerability Assesment in Lower and Municipal-Level Local Governments)

  • 오관영;이명진;한도은
    • 한국지리정보학회지
    • /
    • 제19권1호
    • /
    • pp.1-11
    • /
    • 2016
  • 기후변화는 환경 분야에서 가장 주목받는 화두이며, 인류에게 직면한 가장 도적적인 과제이다. 이러한 문제를 해결하는 방법은 다양하지만, 우리나라의 경우 국가 차원의 1~2차 국가기후변화 적응대책을 수립하고, 각 광역 및 기초 지자체의 기후변화 적응 시행대책 수립을 의무화하고 있다. 기후변화 취약성 평가는 기후변화 적응 시행대책을 수립함에 있어 필수적인 역할을 담당한다. 그러나 취약성 평가는 다양한 영향인자의 복합적 연산을 통해 도출됨으로 개별적인 평가를 수행하기에는 어려움이 있다. 이에 본 연구에서는 기초 및 광역 지자체 차원에서 활용 가능한 웹기반 기후변화 취약성 평가 지원도구(VESTAP)를 개발하였다. VESTAP은 크게 지표 DB와 취약성 평가 및 표출 도구로 구성되어 있다. 지표 DB는 RCP(Representative Concentration Pathways) 4.5와 8.5로 모의된 총 455개의 미래 기후자료, 대기 환경자료, 기타 인문사회통계 자료와 그에 따른 메타데이터 정보를 포함한다. 표출 도구는 각 취약성 평가의 결과에 대한 공간분포, 편향성, 도표화 등 다양한 분석 기능을 제공함으로써 편의성을 극대화 하였다. VESTAP를 활용하여 세종특별자치시에 대한 미세먼지에 의한 건강 취약성 평가를 시범적으로 수행하였으며, 부강면이 상대적으로 취약성이 가장 높은 수치를 나타냈다. 개발된 도구를 활용하여 각 지자체는 보다 쉽고, 편리하게, 그리고 과학적 증거에 기반한 기후변화 적응 시행대책을 수립할 수 있을 것으로 기대한다.

MODIS Fire Spot 정보와 5km 기상 재분석 자료를 활용한 접근불능지역의 산불기상위험지수 산출 모형 개발 (Development of Fire Weather Index Model in Inaccessible Areas using MOD14 Fire Product and 5km-resolution Meteorological Data)

  • 원명수;장근창;윤석희
    • 한국지리정보학회지
    • /
    • 제21권3호
    • /
    • pp.189-204
    • /
    • 2018
  • 본 연구는 북한 및 비무장지대 등 접근불능지역에 대한 기상에 의한 산불발생예측 알고리즘을 개발하고, 실제 현장과 현업에서 활용할 수 있는 실시간 산불위험예보 체계를 개발하는데 있다. 산불기상위험지수 산출 모형 개발을 위해 자료의 취득과 검증을 위한 현장조사가 불가능하다는 연구적 한계가 존재하므로, 이를 해결하기 위해 MODIS 위성자료를 활용하여 접근이 불가능한 지역의 산불발화지점(fire spot)을 과학적 근거를 가지고 추정하였다. 추출된 산불발화지점을 대상으로 기상청에서 생산된 과거 기상 재분석자료(5㎞ 해상도)를 활용하여 산불발화지점에 대한 기상특성을 추출하여 데이터베이스화 하였다. 접근불능지역의 산불발화지점에서 추출된 기상요소들은 산불발생과 기상요인들과의 통계적 상관성과 산불발생 유무(산불발생 1, 산불 미발생 0)를 추정할 수 있는 로지스틱 회귀모형을 활용하여 실시간 기상변화에 의한 산불기상위험지수(Fire Weather Index, FWI)를 개발하였다. FWI 모형의 예측정확도는 66.6%로 나타나 모형의 적합도는 비교적 높은 것으로 나타났다. 이 연구결과는 남 북한의 산불 방지를 위한 정책 입안자들의 의사결정에 유용하게 활용될 것으로 기대한다.

해풍(海風)을 이용한 하계(夏季) 도시열환경(都市熱環境)의 풍도(風道)계획과 인체의 쾌적성에 관한 연구 (Estimating the cooling effect of see breeze along canals and outdoor thermal comfort on urban heat load in summer)

  • 정창원;윤인;최영식
    • 한국산업융합학회 논문집
    • /
    • 제2권1호
    • /
    • pp.19-25
    • /
    • 1999
  • A new urban design method from the viewpoint of climate is considered to be desired for urban life. The authors verified on an environmental planning based on new urban design concept which introduced the effect of sea breeze blowing along canals. The field observation of urban thermal environment were carried out to examine the cooling effects of a river through city. The observations were conducted to find the effect of a sea breeze and climate in summer along canals. Effective distance from the sea and cooling effect of the sea breeze on urban temperature was analyzed. The thermal index using outdoor environment was modified with New Effective Temperature ET*. On the basis of the observation. Human thermal comfort is relieved and affected by sea breeze blowing along canals. The canals were utilized as the trail on which sea breeze blows towards the center of city. From these results, The wind trail is one of the effective passive design method from the viewpoint of urban climate.

  • PDF

기후변화와 서식지 수온 변화에 따른 북서태평양 살오징어(Todarodes pacificus)의 어획량 변동 (Fluctuations of Common Squid Todarodes pacificus Catches in the Northwestern Pacific under Changing Climate and Habitat Temperature)

  • 송혜진
    • 한국수산과학회지
    • /
    • 제51권3호
    • /
    • pp.338-343
    • /
    • 2018
  • Recently, commercial catches of the common squid Todarodes pacificus have dramatically decreased in Korean and Japanese waters. The relationship between common squid catches and environmental factors was investigated using squid catches, climate indices and observed seawater temperatures in Korean waters. Common squid consist of three spawning stocks: autumn, winter, and summer. The autumn stock is the largest in Korea, and its main fishing season appears to have shifted from September in the 1980s to October in the 1990s. We observed negative correlations between the spring Southern Oscillation Index and Korean catches and between the winter Pacific Decadal Oscillation and Japanese catches. Despite global warming, no conspicuous increases in October seawater temperatures have been observed at 10 and 50 m in Korean waters since the mid-1900s. Instead, the 50 m water layer of the East Sea appears to be gradually cooling. Moreover, temperatures at 50 m in the East Sea and the South Sea were significantly negatively correlated with squid catches in Korea and Japan, respectively. Our preliminary analysis indicates a link between climate change, seawater temperature, and squid catches in Korean waters, which helps to inform the direction of subsequent research to identify the cause of rapid decreases in this squid resource.