• Title/Summary/Keyword: Climate events

Search Result 425, Processing Time 0.029 seconds

The Relationship between Climate and Food Incidents in Korea (식품안전 사건 사고와 기후요소와의 관련성)

  • Lee, Jong-Hwa;Kim, Young-Soo;Baek, Hee-Jung;Chung, Myung-Sub
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.297-307
    • /
    • 2011
  • This study investigates relation of food safety incidents with climate. Therefore food safety incidents and climate data during 1999 to 2009 have been analyzed. In situ observations of monthly mean temperature, maximum temperature, minimum temperature, precipitation, and relative humidity in 60 observation stations of Korean Meteorological Administration (KMA) have been used in this study. Food safety incidents data have been constructed by searching media reports following Park's method (2009) during the same period. According to the Park's method, 729 events were collected. To analyze its relations, food safety incidents data have been classified into chemical, biological, and physical hazards. Pearson product-moment correlation coefficients have been applied to analyze the relations. The correlation of food safety incidents has negative one with precipitation (-0.48), and positive one with minimum temperature(0.45). Precipitation has been correlated with biological and physical hazards more than chemical hazard. Temperatures (mean temperature, maximum temperature, and minimum temperature) have been correlated closely with chemical hazard than others. Food safety incidents data has been interblended with human behavior factor through decision-making processes in food manufacturing, processing, and consumption phases of "farm-totable" food processing. Act in the preventing damage will be obvious if the hazard were apparent. Therefore abnormal condition could be more dangerous than that of apparent extreme events because apparent events or extreme events become one of alarm over hazards. Therefore, human behavior should be considered as one of the important factors for analysis of food safety incidents. The result of this study can be used as a better case study for food safety researches related to climate change.

Trends on Temperature and Precipitation Extreme Events in Korea (한국의 극한 기온 및 강수 사상의 변화 경향에 관한 연구)

  • Choi, Young-Eun
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.5 s.104
    • /
    • pp.711-721
    • /
    • 2004
  • The aim of this study is to clarify whether frequency and/or severity of extreme climate events have changed significantly in Korea during recent years. Using the best available daily data, spatial and temporal aspects of ten climate change indicators are investigated on an annual and seasonal basis for the periods of 1954-1999. A systematic increase in the $90^{th}$ percentile of daily minimum temperatures at most of the analyzed areas has been observed. This increase is accompanied by a similar reduction in the number of frost days and a significant lengthening of the thermal growing season. Although the intra-annual extreme temperature range is based on only two observations, it provides a very robust and significant measure of declining extreme temperature variability. The five precipitation-related indicators show no distinct changing patterns for spatial and temporal distribution except for the regional series of maximum consecutive dry days. Interestingly, the regional series of consecutive dry days have increased significantly while the daily rainfall intensity index and the fraction of annual total precipitation due to events exceeding the $95^{th}$ percentile for 1901-1990 normals have insignificantly increased.

A Study for the Computer Simulation on the Flood Prevention Function of the Extensive Green Roof in Connection with RCP 8.5 Scenarios (RCP 8.5 시나리오와 연동한 저관리형 옥상녹화시스템의 수해방재 성능에 대한 전산모의 연구)

  • Kim, Tae Han;Park, Sang Yeon;Park, Eun Hee;Jang, Seung Wan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.3
    • /
    • pp.1-11
    • /
    • 2014
  • Recently, major cities in Korea are suffering from frequent urban flooding caused by heavy rainfall. Such urban flooding mainly occurs due to the limited design capacity of the current drainage network, which increases the vulnerability of the cities to cope with intense precipitation events brought about by climate change. In other words, it can be interpreted that runoff exceeding the design capacity of the drainage network and increased impervious surfaces in the urban cities can overburden the current drainage system and cause floods. The study presents the green roof as a sustainable solution for this issue, and suggests the pre-design using the LID controls model in SWMM to establish more specific flood prevention system. In order to conduct the computer simulation in connection with Korean climate, the study used the measured precipitation data from Cheonan Station of Korea Meteorological Administration (KMA) and the forecasted precipitation data from RCP 8.5 scenario. As a result, Extensive Green Roof System reduced the peak runoff by 53.5% with the past storm events and by 54.9% with the future storm events. The runoff efficiency was decreased to 4% and 7%. This results can be understood that Extensive Green Roof System works effectively in reducing the peak runoff instead of reducing the total stormwater runoff.

Analysis of A1B Climate Change Scenario in the Watersheds of 15 Multi-purpose Dams in South Korea (우리나라 15개 다목적댐 유역별 A1B 기후변화 시나리오 분석)

  • Kim, Hong-Rae;Yi, Hye-Suk;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.2
    • /
    • pp.187-194
    • /
    • 2011
  • This study analyzed the A1B climate change scenario provided by National Institute of Meteorological Research (NIMR), Korea, to investigate potential climate changes in watersheds of 15 multi-purpose dams in South Korea. The A1B climate change scenario is produced by Regional Climate Model (RCM) with 27 km horizontal grid spacings using a one-way nesting technique with Global Climate Model (GCM). Relative to present climate conditions (1971~ 2000), the modeled 10-year averaged daily temperatures at the watersheds of the 15 multi-purpose dams continuously increased to year 2100, whereas precipitation changes were varied regionally (north, central, and south regions of South Korea). At two watersheds located in Gangwon-province (north region), the modeled temporal variations of precipitation rapidly increased in the 2090's after a slow decrease that had occurred since the 2050's. At seven watersheds in the central region, including Gyeongsangbuk-province to Jeollanam-province, the modeled temporal variations of precipitation increase showed 10-year periodic changes. At six watersheds in the south region, the modeled temporal variations of precipitation increased since the 2070's after a rapid decrease in the 2060's. Compared to the climate conditions of the late of 20th century (1971~2000), the number of rainy days and precipitation intensity increased (3% and 6~12%, respectively) in the late 21st century (2071~2100). The frequency of precipitation events tended to increase with precipitation intensity in all regions. The frequency of heavy precipitation events (>50 mm $d^{-1}$) increased with >100% in the north region, 60~100% in the central region, and 20~60% in the south region.

Integrating extreme weather systems induced from typhoons and monsoon in nonstationary frequency analysis

  • Lee, Taesam;So, Chanyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.15-15
    • /
    • 2016
  • In South Korea, annual maximum precipitation often occurs in association with mature typhoons in the western Pacific and from summer monsoon rains. In addition, certain years have no significant typhoon activity. Therefore, the characteristics of frequency distributions differ between extreme typhoons and monsoon events. Those extremes are also influenced from climate conditions in a different way. Application of nonstationary frequency analysis to the AMP data combined with typhoon and monsoon events might not always be reasonable. Therefore, we propose a novel approach of nonstationary frequency analysis to integrate extreme events of AMP induced from two main sources such as typhoons and monsoon in the current study. In this way, we were able to model the nonstationarity of extreme events from tropical storms and monsoon separately.

  • PDF

Review on Environmental Impact Assessment and Adaptation Strategies for Climate Change (기후변화에 따른 적응대책과 환경영향평가)

  • Choi, Kwang-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.2
    • /
    • pp.249-256
    • /
    • 2011
  • Causing by green house gas emission, global warming is being accelerated significantly. This global warming cause world climate to change quiet different than before and we call this phenomenon is Climate Change. Environmental Impact Assessment being implemented in Korea is to prevent predicted environmental impacts from deteriorating within the domestic information and situation. As the climate change is getting severe, new meteorological records can be occurred which is exceeded existing statistical data. According to KMA(Korea Meteorological Administration) data, maximum value of precipitation and temperature in many regions changed with new data within last decade. And these events accompanied with landslides and flooding, and these also affected on water quality in rivers and lakes. According to impacts by climate change, disasters and accidents from heavy rain are the most apprehensive parts. And water pollution caused by overflowed non-point sources during heavy rain fall, fugitive dust caused by long-term drought, and sea level rise and Tsunami may affect on seaside industrial complex should be worth consideration. In this review, necessity of mutual consideration with influences of climate change was considered adding on existing guideline.

Impacts of Climate Change and Financial Support on Household Livelihoods: Evidence from the Northwest Sub-Region of Vietnam

  • DO, Thi Thu Hien;NGUYEN, Thi Lan Anh;NGUYEN, Thi Hoai Phuong
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.6
    • /
    • pp.115-126
    • /
    • 2022
  • The study's goal is to determine the amount of climate change's impact on ethnic minority (EM) households' livelihoods, as well as their adaptability to climate change and long-term viability. The research was conducted in Vietnam's Northwestern Sub-region, where ethnic minorities account for more than half of the overall population. The study uses a combination of qualitative and quantitative methods based on a survey of 480 households in 04 provinces severely affected by climate change in the Northwest sub-region of Vietnam. The results show that: climate change (extreme weather events) occurs with increasing frequency, mainly affecting the life expectancy, health, and capital of households; Vulnerable groups (women, ethnic minorities) have a poor adaptive capacity and mainly suffer the consequences of shocks, are afraid to change their livelihoods; Microfinance plays an important role in enhancing the sustainability of livelihoods through increasing capital and financial assets and reducing the vulnerability of ethnic minority households. Finally, research has some solutions for microfinance - special credit specifically for ethnic minority households in the Northwest Sub-region: support for microfinance advice, home credit with transition orientations to adapt to climate change response and relieves its impact on the social lives.

Future flood frequency analysis from the heterogeneous impacts of Tropical Cyclone and non-Tropical Cyclone rainfalls in the Nam River Basin, South Korea

  • Alcantara, Angelika;Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.139-139
    • /
    • 2021
  • Flooding events often result from extreme precipitations driven by various climate mechanisms, which are often disregarded in flood risk assessments. To bridge this gap, we propose a climate-mechanism-based flood frequency analysis that accommodates the direct linkage between the dominant climate processes and risk management decisions. Several statistical methods have been utilized in this approach including the Markov Chain analysis, K-nearest neighbor (KNN) resampling approach, and Z-score-based jittering method. After that, the impacts of climate change are associated with the modification of the transition matrix (TM) and the application of the quantile mapping approach. For this study, we have selected the Nam River Basin, South Korea, to consider the heterogeneous impacts of the two climate mechanisms, including the Tropical Cyclone (TC) and non-TCs. Based on our results, while both climate mechanisms have significant impacts on future flood extremes, TCs have been observed to bring more significant and immediate impacts on the flood extremes. The results in this study have proven that the proposed approach can lead to a new insights into future flooding management.

  • PDF

A Numerical Simulation Study of Strong Wind Events at Jangbogo Station, Antarctica (남극 장보고기지 주변 강풍사례 모의 연구)

  • Kwon, Hataek;Kim, Shin-Woo;Lee, Solji;Park, Sang-Jong;Choi, Taejin;Jeong, Jee-Hoon;Kim, Seong-Joong;Kim, Baek-Min
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.617-633
    • /
    • 2016
  • Jangbogo station is located in Terra Nova Bay over the East Antarctica, which is often affected by individual storms moving along nearby storm tracks and a katabatic flow from the continental interior towards the coast. A numerical simulation for two strong wind events of maximum instantaneous wind speed ($41.17m\;s^{-1}$) and daily mean wind speed ($23.92m\;s^{-1}$) at Jangbogo station are conducted using the polar-optimized version of Weather Research and Forecasting model (Polar WRF). Verifying model results from 3 km grid resolution simulation against AWS observation at Jangbogo station, the case of maximum instantaneous wind speed is relatively simulated well with high skill in wind with a bias of $-3.3m\;s^{-1}$ and standard deviation of $5.4m\;s^{-1}$. The case of maximum daily mean wind speed showed comparatively lower accuracy for the simulation of wind speed with a bias of -7.0 m/s and standard deviation of $8.6m\;s^{-1}$. From the analysis, it is revealed that the each case has different origins for strong wind. The highest maximum instantaneous wind case is caused by the approach of the strong synoptic low pressure system moving toward Terra Nova Bay from North and the other daily wind maximum speed case is mainly caused by the katabatic flow from the interiors of Terra Nova Bay towards the coast. Our evaluation suggests that the Polar WRF can be used as a useful dynamic downscaling tool for the simulation and investigation of high wind events at Jangbogo station. However, additional efforts in utilizing the high resolution terrain is required to reduce the simulation error of high wind mainly caused by katabatic flow, which is received a lot of influence of the surrounding terrain.

Analysis of Impact Climate Change on Extreme Rainfall Using B2 Climate Change Scenario and Extreme Indices (B2 기후변화시나리오와 극한지수를 이용한 기후변화가 극한 강우 발생에 미치는 영향분석)

  • Kim, Bo Kyung;Kim, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.23-33
    • /
    • 2009
  • Climate change, abnormal weather, and unprecedented extreme weather events have appeared globally. Interest in their size, frequency, and changes in spatial distribution has been heightened. However, the events do not display regional or regular patterns or cycles. Therefore, it is difficult to carry out quantified evaluation of their frequency and tendency. For more objective evaluation of extreme weather events, this study proposed a rainfall extreme weather index (STARDEX, 2005). To compare the present and future spatio-temporal distribution of extreme weather events, each index was calculated from the past data collected from 66 observation points nationwide operated by Korea Meteorological Administration (KMA). Tendencies up to now have been analyzed. Then, using SRES B2 scenario and 2045s (2031-2050) data from YONU CGCM simulation were used to compute differences among each of future extreme weather event indices and their tendencies were spatially expressed.The results shows increased rainfall tendency in the East-West inland direction during the summer. In autumn, rainfall tendency increased in some parts of Gangwon-do and the south coast. In the meanwhile, the analysis of the duration of prolonged dry period, which can be contrasted with the occurrence of rainfall or its concentration, showed that the dryness tendency was more pronounced in autumn rather than summer. Geographically, the tendency was more remarkable in Jeju-do and areas near coastal areas.