• Title/Summary/Keyword: Climate Temperature

Search Result 2,543, Processing Time 0.024 seconds

Long-term Simulation and Uncertainty Quantification of Water Temperature in Soyanggang Reservoir due to Climate Change (기후변화에 따른 소양호의 수온 장기 모의 및 불확실성 정량화)

  • Yun, Yeojeong;Park, Hyungseok;Chung, Sewoong;Kim, Yongda;Ohn, Ilsang;Lee, Seoro
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.14-28
    • /
    • 2020
  • Future climate change may affect the hydro-thermal and biogeochemical characteristics of dam reservoirs, the most important water resources in Korea. Thus, scientific projection of the impact of climate change on the reservoir environment, factoring uncertainties, is crucial for sustainable water use. The purpose of this study was to predict the future water temperature and stratification structure of the Soyanggang Reservoir in response to a total of 42 scenarios, combining two climate scenarios, seven GCM models, one surface runoff model, and three wind scenarios of hydrodynamic model, and to quantify the uncertainty of each modeling step and scenario. Although there are differences depending on the scenarios, the annual reservoir water temperature tended to rise steadily. In the RCP 4.5 and 8.5 scenarios, the upper water temperature is expected to rise by 0.029 ℃ (±0.012)/year and 0.048 ℃ (±0.014)/year, respectively. These rise rates are correspond to 88.1 % and 85.7 % of the air temperature rise rate. Meanwhile, the lower water temperature is expected to rise by 0.016 ℃ (±0.009)/year and 0.027 ℃ (±0.010)/year, respectively, which is approximately 48.6 % and 46.3 % of the air temperature rise rate. Additionally, as the water temperatures rises, the stratification strength of the reservoir is expected to be stronger, and the number of days when the temperature difference between the upper and lower layers exceeds 5 ℃ increases in the future. As a result of uncertainty quantification, the uncertainty of the GCM models showed the highest contribution with 55.8 %, followed by 30.8 % RCP scenario, and 12.8 % W2 model.

A Study on Changes of the Spatio-Temporal Distribution of Temperature in Korea Peninsular During the Past 40 Years (지난 40년간 한반도 기온의 시·공간적 분포 변화에 관한 연구)

  • Kim, Nam-Shin;Kim, Gyung-Soon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.4
    • /
    • pp.29-38
    • /
    • 2013
  • This study is to construe the spatio-temporal characteristics of temperature in cities and the changes of climatical regions by analyzing a climate change in Korea peninsular. We used daily mean air temperature data which were collected in South and North climate stations for the past 34 years from 1974 to 2007. We created temperature maps of 500m resolution with Inverse Distance Weight in application with adiabatic lapse rate per month in linear relation with height and temperature. In the urbanization area, the data analyzed population in comparison with temperature changes by the year. The south climate region in Korea by the Warmth index was expanded to the middle climate region by the latitude after 1990s. A rise of mean temperature was $0.5{\sim}1.2^{\circ}C$ in urban areas such as Seoul, metropolitan and cities which had a rapid urbanization and industrialization with the population increase between 1980s and 1990s. In case of North Korea, cities such as Pyeongyang, Anju, Gaecheon, and Hesan had the same pattern.

Uncertainty in the Estimation of Arctic Surface Temperature during Early 1900s Revealed by the Comparison between HadCRU4 and 20CR Reanalysis (HadCRU4 관측 온도자료와 20CR 재분석 자료 비교로부터 확인된 1900년대 초반 극지역 평균 온도 추정의 불확실성)

  • Kim, Baek-Min;Kim, Jin-Young
    • Journal of Climate Change Research
    • /
    • v.6 no.2
    • /
    • pp.95-104
    • /
    • 2015
  • To discuss whether we have credible estimations about historical surface temperature evolution since industrial revolution or not, present study investigates consistencies and differences of averaged surface air temperature since 1900 between the multiple data sources: Hadley Center Climate Research Unit (HadCRU4) surface air temperature data, ECMWF 20 Century Reanalysis data (ERA20CR), and NCEP 20 Century Reanalysis data (NCEP20CR). Averaged surface temperatures are obtained for the global, polar (90S~60S, 60N~0N), midlatitude (60S~30S, 30N~60N), tropical (30S~30N) region, separately. From the analysis, we show that: 1) spatio-temporal inhomogenity and scarcity of HadCRU4 data are not major obstacles in the reliable estimation of global surface air temperature. 2) Globally averaged temperature variability is largely contributed by those of tropical and midlatitude, which occupy more than 70% of earth surface in area. 3) Both data show consistent temperature variability in tropical region. 4) ERA20CR does not capture warm period over Arctic region in early 1900s, which is obvious feature in HadCRU4 data. Discrepancies among datasets suggest that high-level caution is needed especially in the interpretation of large Arctic warming in the early 1900s, which is often regarded as a natural variability in the Arctic region.

Climate Change Concerns in Mongolia

  • Dagvadorj, D.;Gomboluudev, P.;Natsagdorj, L.
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.47-54
    • /
    • 2003
  • Climate of Mongolia is a driven force on natural conditions as well as socio-economic development of the country. Due to the precariousness of climate conditions and traditional economic structure, natural disasters, specially disasters of meteorological and hydrological origin, have substantial effect upon the natural resources and socio-economic sectors of Mongolia. Mongolia's climate is characterized by high variability of weather parameters, and high frequency and magnitude of extreme climate and weather events. During the last few decades, climate of the country is changing significantly under the global warning. The annual mean air temperature for the whole territory of the country has increased by $1.56^{\circ}C$ during the last 60 years,. The winter temperature has increased by $1.56^{\circ}C$. These changes in temperature are spatially variable: winter warming is more pronounced in the high mountains and wide valleys between the mountains, and less so in the steppe and Gobi regions. There is a slight trend of increased precipitation during the last 60 years. The average precipitation rate is increased during 1940-1998 by 6%. This trend is not seasonally consistent: while summer precipitation increased by 11 %, spring precipitation decreased by 17. The climate change studies in Mongolia show that climate change will have a significant impact on natural resources such as water resources, natural rangeland, land use, snow cover, permafrost as well as major economic activities of arable farming, livestock, and society (i.e. human health, living standards, etc.) of Mongolia. Therefore, in new century, sustainable development of the country is defined by mitigating and adaptation policies of climate change. The objective of the presentation is to contribute one's idea in the how to reflect the changes in climate system and weather extreme events in the country's sustainable development concept.

  • PDF

Influence of Climate Change on the Lifecycle of Construction Projects at Gaza Strip

  • El-Sawalhi, Nabil;Mahdi, Mahdi
    • Journal of Construction Engineering and Project Management
    • /
    • v.5 no.2
    • /
    • pp.1-10
    • /
    • 2015
  • There is a high confidence based on scientific evidence that climate is changing over time. Now climate change is considered as one of the challenges facing the construction industry. As no project is risk free and climate change has a strong impact on the different phases of the construction project lifecycle. This research aimed at providing a platform of knowledge for the construction management practitioners about the impacts of climate change on the construction projects lifecycle, identify the most dangerous climate change factors on the construction project lifecycle, and identify the most affected phase by climate change factors through the construction projects lifecycle. The study depended on the opinions of civil engineers who have worked in the construction projects field among the reality of Gaza Strip. Questionnaire tool was adopted as the main research methodology in order to achieve the desired objectives. The questionnaire included 127 factors in order to obtain responses from 88 construction practitioners out of 98 representing 89.79% response rate about the influence of climate change on the generic lifecycle of construction projects. The results deduced that the most significant influence on the construction project lifecycle was related to the extreme weather events, rainfall change, and temperature change respectively. There was a general agreement between the respondents that the most affected phase by temperature, rainfall, and extreme weather events is the execution phase. The results also asserted with a high responses scale on the need to alternative procedures and clear strategies in order to face the climate change within construction industry.

Characteristics of soil respiration temperature sensitivity in a Pinus/Betula mixed forest during periods of rising and falling temperatures under the Japanese monsoon climate

  • Oe, Yusuke;Yamamoto, Akinori;Mariko, Shigeru
    • Journal of Ecology and Environment
    • /
    • v.34 no.2
    • /
    • pp.193-202
    • /
    • 2011
  • We studied temperature sensitivity characteristics of soil respiration during periods of rising and falling temperatures within a common temperature range. We measured soil respiration continuously through two periods (a period of falling temperature, from August 7, 2003 to October 13, 2003; and a period of rising temperature from May 2, 2004 to July 2, 2004) using an open-top chamber technique. A clear exponential relationship was observed between soil temperature and soil respiration rate during both periods. However, the effects of soil water content were not significant, because the humid monsoon climate prevented soil drought, which would otherwise have limited soil respiration. We analyzed temperature sensitivity using the $Q_{10}$ value and $R_{ref}$ (reference respiration at the average temperature for the observation period) and found that these values tended to be higher during the period of rising temperature than during the period of falling temperature. In the absence of an effect on soil water content, several other factors could explain this phenomenon. Here, we discuss the factors that control temperature sensitivity of soil respiration during periods of rising and falling temperature, such as root respiration, root growth, root exudates, and litter supply. We also discuss how the contribution of these factors may vary due to different growth states or due to the effects of the previous season, despite a similar temperature range.

Uncertainties estimation of AOGCM-based climate scenarios for impact assessment on water resources (수자원 영향평가를 위한 기후변화 시나리오의 불확실성 평가)

  • Park E-Hyung;Im Eun-Soon;Kwon Won-Tae;Lee Eun-Jeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.138-142
    • /
    • 2005
  • The change of precipitation and temperature due to the global. warming eventually caused the variation of water availability in terms of potential evapotranspiration, soil moisture, and runoff. In this reason national long-term water resource planning should be considered the effect of climate change. Study of AOGCM-based scenario to proposed the plausible future states of the climate system has become increasingly important for hydrological impact assessment. Future climate changes over East Asia are projected from the coupled atmosphere-ocean general circulation model (AOGCM) simulations based on Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 and B2 scenarios using multi-model ensembles (MMEs) method (Min et al. 2004). MME method is used to reduce the uncertainty of individual models. However, the uncertainty increases are larger over the small area than the large area. It is demonstrated that the temperature increases is larger over continental area than oceanic area in the 21st century.

  • PDF

Effects of multiple dam projects on river ecology and climate change: Çoruh River Basin, Turkey

  • Aras, Egemen
    • Advances in environmental research
    • /
    • v.7 no.2
    • /
    • pp.121-138
    • /
    • 2018
  • Depending on the increased energy needs, a large number of dams have been built around the world. These dams have significant impacts on river ecology and climate change. When the climate change scenarios are examined, it is stated that the annual average temperature in Turkey will increase by 2.5-4 degrees in the future years, the south of the country will be opposed to the severe drought threat, and the northern regions will have a flood risk. In particular, it can be predicted that many dams and dam lakes built in the North of Turkey may increase the impact of climate change. In this study, the effects of the dams constructed in Çoruh basin on climate change are examined. Environmental and ecological problems of dam reservoirs have been examined. As a result of the data received from meteorological stations, it was determined that temperature and rainfall changes in the region. In this direction, solution proposal is presented.

Current Issues on Climate Change and Water (기후변화의 쟁점과 물)

  • Yun, Zuwhan
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.641-650
    • /
    • 2009
  • The IPCC's standing on the anthropogenic warming is discussed in this article. The differences between the climate alarmist and skeptics have been addressed in terms of scientific and policy stand point of view. The political and economical significances of climate change have been discussed, too. Although atmospheric temperature and rainfall precipitation are two most important factors in the climate change, most of the recent attentions have drawn on mainly temperature and $CO_2$ issue. In spite of argues on the uncertainty in anthropogenic warming related to $CO_2$, the inevitable climate change should correspondingly change the humanity in near feature.

Properties of Strength Development on Cement Mortar Using Agent for Enduring Cold Climate (내한성 혼화제를 이용한 시멘트 모르타르의 강도증진 특성)

  • 홍상희;김현우;심보길;한민철;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.571-574
    • /
    • 2000
  • When fresh concrete is exposed to low temperature, the concrete may suffer from the frost damage at early ages and the strength development may be delayed. To solve such problems of cold weather concreting admixtures called agent for enduring cold climate are developed to prevent the fresh concrete from being frozen at early ages. In this study, the experiments are carried out on several kinds of agent for enduring cold climate to present their performance. According to experimental results, most kinds of agent for enduring cold climate show the strength development in the range $-5^{\circ}C$ of curing temperature, it tends to be delayed at long term maturity without agents for enduring cold climate. while it gains high strength maturity when agents for enduring cold climate is applied.

  • PDF