• Title/Summary/Keyword: Climate Design

Search Result 963, Processing Time 0.028 seconds

MIL-STD-810 Tailoring for Korean Peninsula and Periphery Climate (한반도 및 주변 권역 기후를 고려한 MIL-STD-810 테일러링에 대한 연구)

  • Kim, Youngrae;Hong, Yeonwoong;Kim, Donggil
    • Journal of Applied Reliability
    • /
    • v.18 no.2
    • /
    • pp.95-103
    • /
    • 2018
  • Purpose: Environment test aim to validate the guarantee of required capability of materiel against various environment conditions which exposed during materiel life-cycle. In this paper, environment test design procedure and tailoring guideline for Korean peninsula and periphery climate are proposed. Methods: To design tailoring guideline, climate data which are regarding Korean peninsula and periphery regions provided from Korea Meteorological Administration (KMA) and National Climatic Data Center (NCDC) are used. Conclusion: For effective environment test, it is important that environment test have to design in considering environment conditions during materiel life-cycle. It is concluded that the high temperature test level can be softer than the test criteria in MIL-HDBK-310, however, the low temperature test level will be expected to be $2{\sim}6^{\circ}C$ harsher than MIL-HDBK-310.

Optimal mix design of air-entrained slag blended concrete considering durability and sustainability

  • Wang, Xiao-Yong;Lee, Han-Seung
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.99-109
    • /
    • 2021
  • Slag blended concrete is widely used as a mineral admixture in the modern concrete industry. This study shows an optimization process that determines the optimal mixture of air-entrained slag blended concrete considering carbonation durability, frost durability, CO2 emission, and materials cost. First, the aim of optimization is set as total cost, which equals material cost plus CO2 emission cost. The constraints of optimization consist of strength, workability, carbonation durability with climate change, frost durability, range of components and component ratio, and absolute volume. A genetic algorithm is used to determine optimal mixtures considering aim function and various constraints. Second, mixture design examples are shown considering four different cases, namely, mixtures without considering carbonation (Case 1), mixtures considering carbonation (Case 2), mixtures considering carbonation coupled with climate change (Case 3), and mixtures of high strength concrete (Case 4). The results show that the carbonization is the controlling factor of the mixture design of the concrete with ordinary strength (the designed strength is 30MPa). To meet the challenge of climate change, stronger concrete must be used. For high-strength slag blended concrete (design strength is 55MPa), strength is the control factor of mixture design.

Analysis of Flood Control Capacity of Agricultural Reservoir Based on SSP Climate Change Scenario (SSP 기후변화 시나리오에 따른 농업용 저수지 홍수조절능력 분석)

  • Kim, Jihye;Kwak, Jihye;Hwang, Soonho;Jun, Sang Min;Lee, Sunghack;Lee, Jae Nam;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.49-62
    • /
    • 2021
  • The objective of this study was to evaluate the flood control capacity of the agricultural reservoir based on state-of-the-art climate change scenario - SSP (Shared Socioeconomic Pathways). 18 agricultural reservoirs were selected as the study sites, and future rainfall data based on SSP scenario provided by CMIP6 (Coupled Model Intercomparison Project 6) was applied to analyze the impact of climate change. The frequency analysis module, the rainfall-runoff module, the reservoir operation module, and their linkage system were built and applied to simulate probable rainfall, maximum inflow, maximum outflow, and maximum water level of the reservoirs. And the maximum values were compared with the design values, such as design flood of reservoirs, design flood of direct downstream, and top of dam elevation, respectively. According to whether or not the maximum values exceed each design value, cases were divided into eight categories; I-O-H, I-O, I-H, I, O-H, O, H, X. Probable rainfall (200-yr frequency, 12-h duration) for observed data (1973~2020) was a maximum of 445.2 mm and increased to 619.1~1,359.7 mm in the future (2011~2100). For the present, 61.1% of the reservoirs corresponded to I-O, which means the reservoirs have sufficient capacity to discharge large inflow; however, there is a risk of overflowing downstream due to excessive outflow. For the future, six reservoirs (Idong, Baekgok, Yedang, Tapjung, Naju, Jangsung) were changed from I-O to I-O-H, which means inflow increases beyond the discharge capacity due to climate change, and there is a risk of collapse due to dam overflow.

Design review on indoor environment of museum buildings in hot-humid tropical climate

  • Ogwu, Ikechukwu;Long, Zhilin;Okonkwo, Moses M.;Zhang, Xuhui;Lee, Deuckhang;Zhang, Wei
    • Advances in Computational Design
    • /
    • v.7 no.4
    • /
    • pp.321-343
    • /
    • 2022
  • Museum buildings display artefacts for public education and enjoyment, ensuring their long-term safety and the comfort of visitors by following strict indoor environment control protocols using mechanical Heating, Ventilation and Air Conditioning (HVAC) systems to keep the (environmental) variables at a fixed comfort level. Maintaining this requires constant supply of energy currently mostly sourced from the combustion of fossil fuels which exacerbates climate change. However, a review on the effects of the indoor environmental variables on museum artefacts as well as museum visitors revealed that there is no specific point at which artefact deterioration occurs, and that there are wide ranges of conditions that guarantee the long-term safety of artefacts and human comfort. Visits to museum buildings in hot-humid tropical climate of Nigeria revealed that strict indoor environmental practices were adopted. Even when appropriate micro-climatic conditions are provided for artefacts, mechanical HVAC systems remain necessary for visitor comfort because almost no consideration is given to natural ventilation. With the current global push towards energy management, this paper reviewed passive environmental control practices, architectural design strategies, and discusses the adaptation of double skin façade with jali screens, and the notion of smart materials, which can satisfy the range of requirements for the long-term safety of artefacts and levels of human comfort in buildings in hot-humid tropical climate, without mechanical HVAC systems. This review would inspire more discussions on passive, energy efficient, smart and climate responsible popular architecture, challenging current thinking on the impact of the more accepted representative architecture.

An Analysis of the Impact of Climate Change on the Korean Onion Market

  • BAEK, Ho-Seung;KIM, In-Seck
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.3
    • /
    • pp.39-50
    • /
    • 2020
  • Purpose: Agriculture, which is heavily influenced by climate conditions, is one of the industries most affected by climate change. In this respect, various studies on the impact of climate change on the agricultural market have been conducted. Since climate change is a long-term phenomenon for more than a decade, long-term projections of agricultural prices as well as climate variables are needed to properly analyze the impact of climate change on the agricultural market. However, these long-term price projections are often major constraints on studies of climate changes. The purpose of this study is to analyze the impacts of climate changes on the Korean onion market using ex-post analysis approach in order to avoid the difficulties of long-term price projections. Research design, data and methodology: This study develops an annual dynamic partial equilibrium model of Korean onion market. The behavioral equations of the model were estimated by OLS based on the annual data from 1988 to 2018. The modelling system is first simulated to have actual onion market conditions from 2014 to 2018 as a baseline and then compared it to the scenario assuming the climatic conditions under RCP8.5 over the same period. Scenario analyses were simulated by both comparative static and dynamic approach to evaluate the differences between the two approaches. Results: According to the empirical results, if the climate conditions under RCP8.5 were applied from 2014 to 2018, the yield of onion would increase by about 4%, and the price of onion would decrease from 3.7% to 17.4%. In addition, the average price fluctuation rate over the five years under RCP8.5 climate conditions is 56%, which is more volatile than 46% under actual climate conditions. Empirical results also show that the price decreases have been alleviated in dynamic model compared with comparative static model. Conclusions: Empirical results show that climate change is expected to increase onion yields and reduce onion prices. Therefore, the appropriate countermeasures against climate change in Korean onion market should be found in the stabilization of supply and demand for price stabilization rather than technical aspects such as the development of new varieties to increase productivity.

Examination of the Optimal Insulation Thickness of Exterior Walls for Climate Change (기후변화를 고려한 외벽 최적단열두께 검토)

  • Jung, Jae-Hoon
    • KIEAE Journal
    • /
    • v.11 no.6
    • /
    • pp.81-86
    • /
    • 2011
  • By strengthening the insulation performance of a building, a great deal of energy can be saved and a comfortable indoor environment can be offered to people. On the other hand, the climate, which has a great influence on the indoor environment, is changed by global warming. Therefore, in planning building envelope structure and design, climate change should be considered. In this paper, the optimal insulation thickness of exterior walls was calculated by an economic assessment method using heating degree-days. Additionally, how much influence climate change has on planning building insulation was investigated. The examination showed that heating degree-days have decreased by about 10% due to climate change in the past few decades. It was also shown that the optimal insulation thickness of exterior walls was thin, at about 6%, in three representative Korean cities (Seoul, Daejeon, Jeju).

Affecting Discharge of Flood Water in Paddy Field from Selecting Rainfall with Fixed and Unfixed Duration (고정, 임의시간 강우량 선택에 따른 농경지 배수 영향 분석)

  • Hwang, Dong Joo;Kim, Byoung Gyu;Shim, Jwa Keun
    • KCID journal
    • /
    • v.19 no.1
    • /
    • pp.64-76
    • /
    • 2012
  • Recently, it has been increased disaster of crops and agricultural facilities with climate change such as regional storm, typhoon. However agricultural facilities have unsafe design criteria of improving drainage corresponding to this change. This study has analyzed the impact that inundation area and magnitude of drainage-facility is decided based on fixed- and unfixed-duration precipitation by applying revised design criteria of drainage for climate change. The result was shown that 1-day and 2-days rainfall for 20-years return period has increased about 11.4%, 4.4% respectively by changing fixed- to unfixed duration. And the increase rate of design flood was 15.0%. The result was also shown that Inundation area was enlarged by 6.6% as well as increased inundation duration under same basic condition in designed rainfall between fixed- and unfixed-duration. According to the analysis, it is necessary for pump capacity in unfixed-duration to be increased by 70% for same effect with fixed-duration. Therefore, when computing method of probability precipitation is changed from fixed one to unfixed-duration by applying revised design criteria, there seems to be improving effect in drainage design. Because 1440-minutes rainfall for 20-years return period with unfixed-duration is more effective than 1-day rainfall for 30-years return period with fixed-duration. By applying unfixed-duration rainfall, capacity of drainage facilities need to be expanded to achieve the same effects (Inundation depth & duration) with fixed-duration rainfall. Further study is required for considering each condition of climate, topography and drainage by applying revised design criteria.

  • PDF

Assessing the resilience of urban water management to climate change

  • James A. Griffiths
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.32-32
    • /
    • 2023
  • Incidences of urban flood and extreme heat waves (due to the urban heat island effect) are expected to increase in New Zealand under future climate change (IPCC 2022; MfE 2020). Increasingly, the mitigation of such events will depend on the resilience of a range Nature-Based Solutions (NBS) used in Sustainable Urban Drainage Schemes (SUDS), or Water Sensitive Urban Design (WSUD) (Jamei and Tapper 2019; Johnson et al 2021). Understanding the impact of changing precipitation and temperature regimes due climate change is therefore critical to the long-term resilience of such urban infrastructure and design. Cuthbert et al (2022) have assessed the trade-offs between the water retention and cooling benefits of different urban greening methods (such as WSUD) relative to global location and climate. Using the Budyko water-energy balance framework (Budyko 1974), they demonstrated that the potential for water infiltration and storage (thus flood mitigation) was greater where potential evaporation is high relative to precipitation. Similarly, they found that the potential for mitigation of drought conditions was greater in cooler environments. Subsequently, Jaramillo et al. (2022) have illustrated the locations worldwide that will deviate from their current Budyko curve characteristic under climate change scenarios, as the relationship between actual evapotranspiration (AET) and potential evapotranspiration (PET) changes relative to precipitation. Using the above approach we assess the impact of future climate change on the urban water-energy balance in three contrasting New Zealand cities (Auckland, Wellington, Christchurch and Invercargill). The variation in Budyko curve characteristics is then used to describe expected changes in water storage and cooling potential in each urban area as a result of climate change. The implications of the results are then considered with respect to existing WSUD guidelines according to both the current and future climate in each location. It was concluded that calculation of Budyko curve deviation due to climate change could be calculated for any location and land-use type combination in New Zealand and could therefore be used to advance the general understanding of climate change impacts. Moreover, the approach could be used to better define the concept of urban infrastructure resilience and contribute to a better understanding of Budyko curve dynamics under climate change (questions raised by Berghuijs et al 2020)). Whilst this knowledge will assist in implementation of national climate change adaptation (MfE, 2022; UNEP, 2022) and improve climate resilience in urban areas in New Zealand, the approach could be repeated for any global location for which present and future mean precipitation and temperature conditions are known.

  • PDF

Considerations of Sustainable High-rise Building Design in Different Climate Zones of China

  • Wan, Kevin K.W.;Chan, Man-Him;Cheng, Vincent S.Y.
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.4
    • /
    • pp.301-310
    • /
    • 2012
  • Buildings, energy and the environment are key issues that the building professions and energy policy makers have to address, especially in the context of sustainable development. With more tall buildings constructed in China, the impact on energy consumption and carbon emission would be great from buildings (2% increase of carbon dioxide annually between 1971 and 2004). The imperative was to investigate the building energy performance of high-rise in different climate zones and identify the key design parameters that impose significantly influence on energy performance in sustainable building design. Design implications on glazing performance, sizing of the ventilation fans, renewable energy application on high-rise building design are addressed. Combination of effective sustainable building design strategies (e.g., building envelope improvement, daylight harvesting, advanced lighting design, displacement ventilation, chilled ceiling etc.) could contribute more than 25% of the total building energy consumption compared to the international building energy code.

A Study on the Characteristics of Friendly Building Techniques of Environment to Adapt to Climate (기후에 순응하는 환경-친화적 구축 기법 특성에 관한 연구)

  • Kim, Jung-Gon;Koh, Gwi-han
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.6
    • /
    • pp.3-10
    • /
    • 2013
  • This study intends to clarify the key elements of designing low energy residential building construction by planning out residential construction in nature oriented designing method utilizing nearby environment and nature oriented energy from designing stage instead of construction of low energy residential building. Development of building technology is proportional to the development of technology that lasts already. However, what is no less important than the advancement of technology, it is the study of fundamental phenomena energy use in response to climate, reduction, such as recycling. It is possible in such a purpose, it is assumed that there is a need to study elements implementation plan in accordance with the climatic characteristics of the study. Method for controlling the condition solar radiation, sunshine, depending on the characteristics of the weather, by utilizing the convection phenomenon of nature, to maintain the air comfort in the interior space is the essence of eco-friendly construction and passive Property This is an important architectural elements to be aim. For through the analysis of this case, corresponding to the phenomenon of the features of the macro climate and micro climate due to climate change, a combination building blocks of classification placement of each, shape, structure, elevation, space, of the material appeared in various it was possible to know the construction characteristics were. As shown in each case, construction method to address climate change has been found to apply to a comprehensive analysis climatic characteristics of each region, in response to this, the construction of element each corresponding.