• Title/Summary/Keyword: Climate Big data

Search Result 121, Processing Time 0.034 seconds

Controlling Photo-Environment of Ginseng Cultivation Using Agricultural Weather Sensor Data (농업기상 센서 데이터를 활용한 인삼재배 광환경 조절 연구)

  • Park, Jeonghwan;Song, Soobin;Seo, Sang Young;Jeon, Sook Lye
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.180-186
    • /
    • 2022
  • Photosynthetically active radiation flux density (PPFD) and daily light integral (DLI) values related to plant photosynthesis were obtained using the sunlight time and insolation data points in the agricultural weather sensor data for Jinan-gun, Jeollabuk-do, Korea from 2016 to 2020. The objective was to optimize the photo-environmental conditions for cultivating ginseng. The range of average monthly sunshine duration was 395.5-664.1 min, with the longest duration observed in June. The range of average annual accumulated daily insolation was 11.98-17.65 MJ·m-2. The range of average daily external DLI calculated from the insolation and solar time data was 22.3-36.1 mol·m-2·d-1, and the annual cumulative DLI was 8,156-13,175 mol·m-2·d-1. Both the insolation and DLI values were the highest in 2016 and lowest in 2020. Based on the PPFD required for ginseng growth (111-185 µmol·m-2·s-1), the monthly average daily DLI and monthly cumulative DLI were 3.51-5.87 and 82-228 mol·m-2·d-1, respectively. The range of five-year average value for the external monthly cumulative DLI was 298-1,459 mol·m-2·d-1, and the monthly cumulative DLI values when a black double shading film and blue-white shading film were applied were 101-496 and 36-175 mol·m-2·d-1, respectively. A comparative analysis of DLI values indicated that shading was required to ginseng growth throughout the year under natural light. When the black double shading film was used, shading was required from March to October. When the blue-white shading film was applied from April to August, (i.e., the period with active ginseng growth) the appropriate DLI for ginseng growth could be continuously maintained. Regional weather differences due to climate change are gradually increasing, and even in one region, monthly and cumulative DLI values are different every year. Therefore, in order to implement a precise agricultural environment for ginseng cultivation, precise analysis and continuous research using agricultural weather sensor big data is required.

Development of Inquiry Activity Materials for Visualizing Typhoon Track using GK-2A Satellite Images (천리안 위성 2A호 영상을 활용한 태풍 경로 시각화 탐구활동 수업자료 개발)

  • Chae-Young Lim;Kyung-Ae Park
    • Journal of the Korean earth science society
    • /
    • v.45 no.1
    • /
    • pp.48-71
    • /
    • 2024
  • Typhoons are representative oceanic and atmospheric phenomena that cause interactions within the Earth's system with diverse influences. In recent decades, the typhoons have tended to strengthen due to rapidly changing climate. The 2022 revised science curriculum emphasizes the importance of teaching-learning activities using advanced science and technology to cultivate digital literacy as a citizen of the future society. Therefore, it is necessary to solve the temporal and spatial limitations of textbook illustrations and to develop effective instructional materials using global-scale big data covered in the field of earth science. In this study, according to the procedure of the PDIE (Preparation, Development, Implementation, Evaluation) model, the inquiry activity data was developed to visualize the track of the typhoon using the image data of GK-2A. In the preparatory stage, the 2015 and 2022 revised curriculum and the contents of the inquiry activities of the current textbooks were analyzed. In the development stage, inquiry activities were organized into a series of processes that can collect, process, visualize, and analyze observational data, and a GUI (Graphic User Interface)-based visualization program that can derive results with a simple operation was created. In the implementation and evaluation stage, classes were conducted with students, and classes using code and GUI programs were conducted respectively to compare the characteristics of each activity and confirm its applicability in the school field. The class materials presented in this study enable exploratory activities using actual observation data without professional programming knowledge which is expected to contribute to students' understanding and digital literacy in the field of earth science.

A Study on the Analysis of Agricultural and Livestock Operations Using ICT-Based Equipment

  • Gokmi, Kim
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.215-221
    • /
    • 2020
  • The paradigm of agriculture is also changing to address the problem of food shortages due to the increase of the world population, climate conditions that are increasingly subtropical, and labor shortages in rural areas due to aging population. With the development of Information Communication Technology (ICT), our daily lives are changing rapidly and heralds a major change in agricultural management. In a hyper-connected society, the introduction of high-tech into traditional Agriculture of the past is absolutely necessary. In the development process of Agriculture, the first generation produced by hand, the second generation applied mechanization, and the third generation introduced automation. The fourth generation is the current ICT operation and the fifth generation is artificial intelligence. This paper investigated Smart Farm that increases productivity through convergence of Agriculture and ICT, such as smart greenhouse, smart orchard and smart Livestock. With the development of sustainable food production methods in full swing to meet growing food demand, Smart Farming is emerging as the solution. In overseas cases, the Netherlands Smart Farm, the world's second-largest exporter of agricultural products, was surveyed. Agricultural automation using Smart Farms allows producers to harvest agricultural products in an accurate and predictable manner. It is time for the development of technology in Agriculture, which benchmarked cases of excellence abroad. Because ICT requires an understanding of Internet of Things (IoT), big data and artificial intelligence as predicting the future, we want to address the status of theory and actual Agriculture and propose future development measures. We hope that the study of the paper will solve the growing food problem of the world population and help the high productivity of Agriculture and smart strategies of sustainable Agriculture.

Study on Species Diversity of Indigenous Mushrooms in Jeju

  • Ko, Pyung Yeol;Jeun, Yong Chull
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.21-21
    • /
    • 2014
  • The importance of utilizing biological resources has become magnified and it has been a big issue to share the benefit among nations as Nagoya Protocol began in 2010. This study was conducted to research the diversity and distribution of wild mushrooms, and to survey the traditional mushroom knowledge of the people in Jejudo which is a volcanic island having a distinctive climate and forest environment. The research sites were Dongbaekdongsan, Keuneonggot, Hallasan National Park, Muryeongarioreum, Saryeonisupgil and other important area where mushrooms are growing spontainously in Jejudo. A total of 511 species comprising 2 phylums, 8 classes, 20 orders and 74 genera were identified from 1600 specimens collected from 2006 to 2012. In previous studies, a total of 561 species comprising 69 families and 99 genera were investigated. As a result, a total of 755 species comprising 23 orders, 87 families and 263 genera were documented in Jejudo. In this study, 137 species were newly identified as unrecorded species in Jejudo and 9 species, Amanita gemmata, Tricholoma aurantiipes, Panellus violaceofulvus, Leucopaxillus septentrionalis, Bondarzewia montana, Psilocybe argentipes, Boedijnopeziza insititia, Sarcoscypha occidentalis for. occidentalis and Morchella patula var. semilibera were the first record for Korea. Also, 7 species, Amanita gemmata, Tricoloma aurantiipes, Panellus violaceofulvus, Leucopaxillus septentrionalis, Boedijnopeziza insititia, Sarcoscypha occidentalis for. occidentalis and Morchella patula var. semilibera were known as only growing in Jejudo. The traditional knowledge was collected from visiting and questionnaire survey in 50 villages in Jejudo. A total of 23 mushrooms were found in which 12 species were used for food, 2 species were poisonous, 6 species were medicinal, 2 species were used for folk religion and 3 species were used for play purposes. Macrolepiota procera was the most commonly used as an edible mushroom and Chlorophyllum neomastoidea was the most well known poisonous mushroom. Also, 267 cases of traditional knowledge about using mushrooms as a food and medicine were collected. This study has significance for supplementing previous studies about distribution of wild mushrooms in Jejudo and documenting unrecorded species in Korea. Also, it is valuable by providing important data of traditional knowledge for using mushrooms since old times.

  • PDF

Development and Application of a Physics-based Soil Erosion Model (물리적 표토침식모형의 개발과 적용)

  • Yu, Wansik;Park, Junku;Yang, JaeE;Lim, Kyoung Jae;Kim, Sung Chul;Park, Youn Shik;Hwang, Sangil;Lee, Giha
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.66-73
    • /
    • 2017
  • Empirical erosion models like Universal Soil Loss Equation (USLE) models have been widely used to make spatially distributed soil erosion vulnerability maps. Even if the models detect vulnerable sites relatively well utilizing big data related to climate, geography, geology, land use, etc within study domains, they do not adequately describe the physical process of soil erosion on the ground surface caused by rainfall or overland flow. In other words, such models are still powerful tools to distinguish the erosion-prone areas at large scale, but physics-based models are necessary to better analyze soil erosion and deposition as well as the eroded particle transport. In this study a physics-based soil erosion modeling system was developed to produce both runoff and sediment yield time series at watershed scale and reflect them in the erosion and deposition maps. The developed modeling system consists of 3 sub-systems: rainfall pre-processor, geography pre-processor, and main modeling processor. For modeling system validation, we applied the system for various erosion cases, in particular, rainfall-runoff-sediment yield simulation and estimation of probable maximum sediment (PMS) correlated with probable maximum rainfall (PMP). The system provided acceptable performances of both applications.

Comparison of soil erosion simulation between empirical and physics-based models

  • Yeon, Min Ho;Kim, Seong Won;Jung, Sung Ho;Lee, Gi Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.172-172
    • /
    • 2020
  • In recent years, soil erosion has come to be regarded as an essential environmental problem in human life. Soil erosion causes various on- and off-site problems such as ecosystem destruction, decreased agricultural productivity, increased riverbed deposition, and deterioration of water quality in streams. To solve these problems caused by soil erosion, it is necessary to quantify where, when, how much soil erosion occurs. Empirical erosion models such as the Universal Soil Loss Equation (USLE) family models have been widely used to make spatially distributed soil erosion vulnerability maps. Even if the models detect vulnerable sites relatively well by utilizing big data related to climate, geography, geology, land use, etc. within study domains, they do not adequately describe the physical process of soil erosion on the ground surface caused by rainfall or overland flow. In other words, such models remain powerful tools to distinguish erosion-prone areas at the macro scale but physics-based models are necessary to better analyze soil erosion and deposition and eroded particle transport. In this study, the physics-based Surface Soil Erosion Model (SSEM) was upgraded based on field survey information to produce sediment yield at the watershed scale. The modified model (hereafter MoSE) adopted new algorithms on rainfall kinematic energy and surface flow transport capacity to simulate soil erosion more reliably. For model validation, we applied the model to the Doam dam watershed in Gangwon-do and compared the simulation results with the USLE outputs. The results showed that the revised physics-based soil erosion model provided more improved and reliable simulation results than the USLE in terms of the spatial distribution of soil erosion and deposition.

  • PDF

Analysis of the Research Trends by Environmental Spatial-Information Using Text-Mining Technology (텍스트 마이닝 기법을 활용한 환경공간정보 연구 동향 분석)

  • OH, Kwan-Young;LEE, Moung-Jin;PARK, Bo-Young;LEE, Jung-Ho;YOON, Jung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.1
    • /
    • pp.113-126
    • /
    • 2017
  • This study aimed to quantitatively analyze the trends in environmental research that utilize environmental geospatial information through text mining, one of the big data analysis technologies. The analysis was conducted on a total of 869 papers published in the Republic of Korea, which were collected from the National Digital Science Library (NDSL). On the basis of the classification scheme, the keywords extracted from the papers were recategorized into 10 environmental fields including "general environment", "climate", "air quality", and 20 environmental geospatial information fields including "satellite image", "numerical map", and "disaster". With the recategorized keywords, their frequency levels and time series changes in the collected papers were analyzed, as well as the association rules between keywords. First, the results of frequency analysis showed that "general environment"(40.85%) and "satellite image"(24.87%) had the highest frequency levels among environmental fields and environmental geospatial information fields, respectively. Second, the results of the time series analysis on environmental fields showed that the share of "climate" between 1996 and 2000 was high, but since 2001, that of "general environment" has increased. In terms of environmental geospatial information fields, the demand for "satellite image" was highest throughout the period analyzed, and its utilization share has also gradually increased. Third, a total of 80 correlation rules were generated for environmental fields and environmental geospatial information fields. Among environmental fields, "general environment" generated the highest number of correlation rules (17) with environmental geospatial information fields such as "satellite image" and "digital map".

A Study on Characteristics of Eco-friendly Behaviors using Big Data: Focusing on the Customer Sales Data of Green Card (빅 데이터를 활용한 친환경행동 특성에 관한 연구: 대용량 그린카드 거래데이터를 중심으로)

  • Lim, Mi Sun;Kim, Jinhwa;Byeon, Hyeonsu
    • Journal of Digital Convergence
    • /
    • v.14 no.1
    • /
    • pp.151-161
    • /
    • 2016
  • As part of a policy to address climate change and pollution problem, the government introduced a green credit card scheme in order to motivate pro-environmental behaviors in July 2011. It is important to present the specific ways to facilitate pro-environmental behaviors using the consumer behavior pattern data. This study was a result of data from total fifty seven thousands customer purchasing history data of green credit card to be created for the 3 months from January to March 2015. As the analysis process is put in to operation the analysis of the purchasing customer's profile firstly, and the second come into association analysis to consider the buying associations for green products purchasing networks, the third estimate the useful parameters to affect the customer's pro-environmental behavior and customer characteristics. It shows that royal customers are from 30 to 40 years old and their incomes are from 30 million won to 40 million won. Especially, they live in Daegu, Gyeonggi, and Seoul.

Urban Landscape Image Study by Text Mining and Factor Analysis - Focused on Lotte World Tower - (텍스트 마이닝과 인자분석에 의한 도시경관이미지 연구 - 롯데월드타워를 대상으로 -)

  • Woo, Kyung-Sook;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.4
    • /
    • pp.104-117
    • /
    • 2017
  • This study compares the results of landscape image analysis using text mining techniques and factor analysis for Lotte World Tower, which is the first atypical skyscraper building in Korea, and identifies landscape images of the site to determine possibilities of use. Lotte World Tower's landscape image has been extracted from text mining analysis focusing on adjectives such as 'new', 'transformational', 'unusual', 'novelty', 'impressive', and 'unique', and phrases such as in the process of change, people's active elements(caliber, outing, project, night view), media(newspaper, blog), and climate(weather, season). As a result of the factor analysis, factors affecting the landscape image of Lotte World Tower were symbolic, aesthetic, and formative. Identification, which is a morphological feature, has characteristics of scale and visibility but it is not statistically significant in preference. Rather, the psychological factors such as the symbolism with characteristics such as poison and specialty, harmony with the characteristics of the surrounding environment, and beautiful aesthetic characteristics were an influence on the landscape image. The common results of the two research methods show that psychological characteristics such as factors that can represent and represent the city affect the landscape image more greatly than the morphological and physical characteristics such as location and location of the building. In addition, the text mining technique can identify nouns and adjectives corresponding to the images that people see and feel, and confirms the relationship between the derived keywords, so that it can focus the process of forming the landscape image and further the image of the city. It would appear to be a suitable method to complement the limitation of landscape research. This study is meaningful in that it confirms the possibility that big data can be utilized in landscape analysis, which is one research field of landscape architecture, and is significant for understanding the information of a big data base and contribute to enlarging the landscape research area.

Development of the National Integrated Daily Weather Index (DWI) Model to Calculate Forest Fire Danger Rating in the Spring and Fall (봄철과 가을철의 기상에 의한 전국 통합 산불발생확률 모형 개발)

  • Won, Myoungsoo;Jang, Keunchang;Yoon, Sukhee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.348-356
    • /
    • 2018
  • Most of fires were human-caused fires in Korea, but meteorological factors are also big contributors to fire behavior and its spread. Thus, meteorological factors as well as topographical and forest factors were considered in the fire danger rating systems. This study aims to develop an advanced national integrated daily weather index(DWI) using weather data in the spring and fall to support forest fire prevention strategy in South Korea. DWI represents the meteorological characteristics, such as humidity (relative and effective), temperature and wind speed, and we integrated nine logistic regression models of the past into one national model. One national integrated model of the spring and fall is respectively $[1+{\exp}\{-(2.706+(0.088^*T_{mean})-(0.055^*Rh)-(0.023^*Eh)-(0.014^*W_{mean}))\}^{-1}]^{-1}$, $[1+{\exp}\{-(1.099+(0.117^*T_{mean})-(0.069^*Rh)-(0.182^*W_{mean}))\}^{-1}]^{-1}$ and all weather variables significantly (p<0.01) affected the probability of forest fire occurrence in the overall regions. The accuracy of the model in the spring and fall is respectively 71.7% and 86.9%. One integrated national model showed 10% higher accuracy than nine logistic regression models when it is applied weather data with 66 random sampling in forest fire event days. These findings would be necessary for the policy makers in the Republic of Korea for the prevention of forest fires.