• Title/Summary/Keyword: Climate Assessment

Search Result 1,281, Processing Time 0.028 seconds

Methodology of CO2 Emission Factor Verification and Quantitative Assessment in Ethylene Product Processes (에틸렌 생산에서의 CO2 국가배출계수 검증 및 정량평가 방법론)

  • Youk, Soo Kyung;Jeon, Eui-Chan;Yoo, Kyung Seun
    • Journal of Climate Change Research
    • /
    • v.9 no.1
    • /
    • pp.69-74
    • /
    • 2018
  • The purpose of this study is to suggest the methodology of $CO_2$ Emission Factor Verification and Quantitative Assessment in Ethylene Product Processes. At first, this study compare the IPCC (Intergovernmental Panel on Climate Change) 1996 Guideline and 2006 Guideline. And analyse methodology for estimating $CO_2$ emission and $CO_2$ emission factor in Ethylene product process. Also analyse cases of estimating $CO_2$ emission factor based on material balance. Methodology of $CO_2$ Emission Factor Verification and Quantitative Assessment are following the categories proposed by GIR (Greenhouse Gas Inventory and Research Center). There are total 12 factors in 8 categories and give 5 or 10 points according to their importance. Also this study suggests necessary data of document to meet the conditions. The result would help estimate accuracy Greenhouse Gas Inventory. Also contribute to establish policy on environmental assessment, air conservation, etc.

Economic Assessment for Flood Control Infrastructure under Climate Change : A Case Study of Imjin River Basin (기후변화를 고려한 홍수방재시설물의 경제성분석 : 임진강 유역사례)

  • Kim, Kyeongseok;Oh, Seungik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.2
    • /
    • pp.81-90
    • /
    • 2017
  • In Imjin River basin, three floods occurred between 1996 and 1999, causing many casualties and economic losses of 900 billion won. In Korea, flood damage is expected to increase in the future due to climate change. This study used the climate scenarios to estimate future flood damage costs and suggested a real options-based economic assessment method. Using proposed method, the flood control infrastructures in Imjin River basin were selected as a case study site to analyze the economic feasibility of the investment. Using RCP (Representative Concentration Pathway) climate scenarios, the future flood damage costs were estimated through simulated rainfall data. This study analyzed the flood reduction benefits through investment in the flood control infrastructures. The volatility of flood damage reduction benefits were estimated assuming that the RCP8.5 and RCP4.5 climate scenarios would be realized in the future. In 2071, the project option value would be determined by applying an extension option to invest in an upgrading that would allow the project to adapt to the flood of the 200-year return period. The results of the option values show that the two investment scenarios are economically feasible and the project under RCP8.5 climate scenario has more flood damage reduction benefits than RCP4.5. This study will help government decision makers to consider the uncertainty of climate change in the economic assessment of flood control infrastructures using real options analysis. We also proposed a method to quantify climate risk factors into economic values by using rainfall data provided by climate scenarios.

Development of Safety Climate Measuring Software Tool (안전문화측정 전산화 프로그램 개발)

  • Baek, Jong-Bae;Ko, Jae-Wook
    • Journal of Energy Engineering
    • /
    • v.18 no.1
    • /
    • pp.63-68
    • /
    • 2009
  • The safety culture of an organization is very complex and hard to study, but it is possible to examine norms that make up the culture. This paper describes of a Process Safety Management (PSM) climate assessment tool developed in high risk industry such as chemical industries. The main purpose is to develop measuring software tool behaviors by examining their nature and strength and by analysing underlying factors that offer explanations for attitudinal differences. We reviewed the current techniques and literatures available to assess safety climate and culture, conducted focus group interviews and discussions. Based on the reviews and focus group, PSM climate assessment questionnaires and an online application program were developed. A pilot assessment was done at a chemical plant in Korea and the safety climate profile was completed. It was suggested to have a constant feedback from different sectors of industry to improve the application.

A Preliminary Study on Assessment of Urban Parks and Green Zones of Ecological Attributes and Responsiveness to Climate Change (도시공원녹지의 생태성 및 기후변화 대응성 평가 기초 연구)

  • Sung, Hyun-Chan;Hwang, So-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.3
    • /
    • pp.107-117
    • /
    • 2013
  • Problems in regard of ecological stability of urban ecosystem ensue from climate change and urbanization. Particularly, urban ecological conditions are deteriorating both quantitatively and qualitatively to a great extent. The present study aims to assess the current condition of selected sites (i. e. urban green zones and parks) in terms of preset assessment components; to find out problems and relevant solutions to improve the quality and quantity of parks and green zones; and ultimately to suggest some measures applicable to coping with climate change as well as to securing the ecological attributes of urban green zones and parks. According to the findings of this study, from quantitative perspectives, ecological attributes and responsiveness to climate change are high on account of the large natural-soil area(80%). By contrast, from qualitative perspectives including the planting structure (1 layer: 47%), the percentage of bush area(17%), the connectivity with surrounding green zones (independent types: 44%), the wind paths considered (5.6%), the tree species with high carbon absorption rates (20%), water cycles (17%), energy (8%) and carbon storage capacities(61%), ecological attributes and responsiveness to climate change were found very low. These findings suggest that the ecological values of urban parks and green zones should be improved in the future by conserving their original forms, securing natural-soil grounds and employing multi-layered planting structures and water bodies, and that responsiveness to climate change should be enhanced by planting tree species with high carbon storage capacities and obtaining detention ponds. In sum, robust efforts should be exerted in the initial planning stages, and sustained, to apply the methodology of green-zone development along with securing ecological attributes and responsiveness to climate change.

Uncertainty in Regional Climate Change Impact Assessment using Bias-Correction Technique for Future Climate Scenarios (미래 기상 시나리오에 대한 편의 보정 방법에 따른 지역 기후변화 영향 평가의 불확실성)

  • Hwang, Syewoon;Her, Young Gu;Chang, Seungwoo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.95-106
    • /
    • 2013
  • It is now generally known that dynamical climate modeling outputs include systematic biases in reproducing the properties of atmospheric variables such as, preciptation and temerature. There is thus, general consensus among the researchers about the need of bias-correction process prior to using climate model results especially for hydrologic applications. Among the number of bias-correction methods, distribution (e.g., cumulative distribution fuction, CDF) mapping based approach has been evaluated as one of the skillful techniques. This study investigates the uncertainty of using various CDF mapping-based methods for bias-correciton in assessing regional climate change Impacts. Two different dynamicailly-downscaled Global Circulation Model results (CCSM and GFDL under ARES4 A2 scenario) using Regional Spectial Model for retrospective peiod (1969-2000) and future period (2039-2069) were collected over the west central Florida. Total 12 possible methods (i.e., 3 for developing distribution by each of 4 for estimating biases in future projections) were examined and the variations among the results using different methods were evaluated in various ways. The results for daily temperature showed that while mean and standard deviation of Tmax and Tmin has relatively small variation among the bias-correction methods, monthly maximum values showed as significant variation (~2'C) as the mean differences between the retrospective simulations and future projections. The accuracy of raw preciptiation predictions was much worse than temerature and bias-corrected results appreared to be more significantly influenced by the methodologies. Furthermore the uncertainty of bias-correction was found to be relevant to the performance of climate model (i.e., CCSM results which showed relatively worse accuracy showed larger variation among the bias-correction methods). Concludingly bias-correction methodology is an important sourse of uncertainty among other processes that may be required for cliamte change impact assessment. This study underscores the need to carefully select a bias-correction method and that the approach for any given analysis should depend on the research question being asked.

Predicting the Potential Distribution of an Invasive Species, Solenopsis invicta Buren (Hymenoptera: Formicidae), under Climate Change using Species Distribution Models

  • SUNG, Sunyong;KWON, Yong-Su;LEE, Dong Kun;CHO, Youngho
    • Entomological Research
    • /
    • v.48 no.6
    • /
    • pp.505-513
    • /
    • 2018
  • The red imported fire ant is considered one of the most notorious invasive species because of its adverse impact on both humans and ecosystems. Public concern regarding red imported fire ants has been increasing, as they have been found seven times in South Korea. Even if red imported fire ants are not yet colonized in South Korea, a proper quarantine plan is necessary to prevent their widespread distribution. As a basis for quarantine planning, we modeled the potential distribution of the red imported fire ant under current climate conditions using six different species distribution models (SDMs) and then selected the random forest (RF) model for modeling the potential distribution under climate change. We acquired occurrence data from the Global Biodiversity Information Facility (GBIF) and bioclimatic data from WorldClim. We modeled at the global scale to project the potential distribution under the current climate and then applied models at the local scale to project the potential distribution of the red imported fire ant under climate change. Modeled results successfully represent the current distribution of red imported fire ants. The potential distribution area for red imported fire ants increased to include major harbors and airports in South Korea under the climate change scenario (RCP 8.5). Thus, we are able to provide a potential distribution of red imported fire ant that is necessary to establish a proper quarantine plan for their management to minimize adverse impacts of climate change.

Characteristics of GHG emission according to socio-economic by the type of local governments, REPUBLIC OF KOREA (지자체 유형별 사회경제적 특성에 따른 온실가스 배출특성 분석)

  • Park, Chan;Kim, Dai-Gon;Seong, Mi-Ae;Seo, Jeonghyeon;Seol, Sunghee;Hong, You-Deog;Lee, Dong-Kun
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.3
    • /
    • pp.195-201
    • /
    • 2013
  • Local governments are establishing their own greenhouse gas reduction goal and are playing a important role to respond to climatic changes. However, there are difficulties in quantitative analyses such as estimation of future greenhouse gas emission and computation of reduction potential, which are procedures required to establish mid to long term strategies to realize of low carbon society by each local governments. Also, reduction measures must reflect characteristics of each local government, since the reduction power of each local government can differ according to characteristics of each. In order to establish strategies that reflect characteristics of local governments, types of greenhouse gas emission from cities were classified largely into residential city, commercial city, residential commercial city, agriculture and fishery city, convergence city, and industrial city. As a result of analyzing basic unit of greenhouse gas emission by local government during 2007 in terms of per population, household and GRDP based on the type classification, significant results were deduced for each type. To manage the amount of the national greenhouse gas, reduction measures should be focused on the local governments that emits more than the average of each type's GHG emission.

Ecosystem Service Assessment of Urban Forest for Water Supply and Climate Mitigation of Seoul Metropolitan Area (환경공간정보를 이용한 수도권의 수자원 공급과 기후완화 기능을 위한 도시림의 생태계서비스 평가)

  • Lee, Soo Jeong;Yoo, Somin;Ham, Boyoung;Lim, Chul-Hee;Song, Cholho;Kim, Moonil;Kim, Sea Jin;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1119-1137
    • /
    • 2017
  • This study assessed the water provisioning and climate mitigation ecosystem services of the urban forest in Seoul and Gyeonggi-do. The ecosystem service assessment is conducted based on natural function, natural function and population, and natural function and the beneficiary of the ecosystem service. Then, the impact of climate change on ecosystem services is analyzed to figure out the sensitivity of the impact on the beneficiary when the natural function of forest destroys under climate change. Gyeonggi-do has higher function-based water provisioning ecosystem service than Seoul. And population-based water provisioning ecosystem service appears to be higher in the densely populated area. On the other hand, beneficiary-based water provisioning ecosystem service by applying both natural water supply function and beneficiary distribution appears different with the result of population-based water provisioning service assessment. In other words, regions with high beneficiary population show higher ecosystem service than those with a low beneficiary population even though they have the same water storage function. In addition, climate change has a negative impact on the water provisioning ecosystem service. Under climate change, water provisioning service is expected to decrease by 26%. For climate mitigation service, regions close to the forest seem to have a low temperature, which indicates their high climate mitigation service. The center of the city with high beneficiary population shows high beneficiary-based ecosystem service. The climate change impacts the forest growth to decrease which affect the beneficiary-based climate mitigation ecosystem service to decrease by 33%. From this study, we conclude that beneficiary-based function and ecosystem service assessment is needed as well as the supply-based classification of forest function suggested by Korea Forest Service. In addition, we suggest that not only supply-based function classification and ecosystem service assessment but also beneficiary-based function classification and ecosystem service assessment is needed for managing the urban forest, which has been destroyed by climate change. This will contribute to revaluing cases where a forest with low natural function but high beneficiary-based ecosystem service, which is not considered under the current forest function-based assessment system. Moreover, this could assist in developing a suitable management plan for the urban forest.

A Study on the Role of Safety Climate in the Safety Management System -focus on OHSAS 18000certification-

  • Deng Hua;Kim Chang-Eun
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.2
    • /
    • pp.1-12
    • /
    • 2006
  • The purpose of this research is to understand the role of safety climate in the safety management system. Based on the 121 responses from facilities got Occupational Health & Safety Assessment Series (OHSAS) 18000 certification, the results of statistic analysis show that there is significant relationship between safety climate, work attitudes and Organizational Citizenship Behaviors (OCB). The most important finding is the relationship between safety climate and organizational commitment will mediate the relationship.

Capability Assessment on Meteorological Technology - Comparative Study of Technological Prowess on Korea, U.S., and Japan - (국가 기상기술력 수준 평가 - 한국, 미국, 일본을 대상으로 한 비교 연구 -)

  • Kim, Se-Won;Park, Gil-Un;Cho, Changbum;Lee, Young-Gon;Yim, Deok-Bin
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.319-336
    • /
    • 2011
  • The objective of this study was to assess the meteorological capability of Korea by comparing with that of the U.S. and Japan as of 2010. The research was conducted based on various indices and surveys, and quantified the results using the Gordon's scoring model. The index assessment used 11 items derived from 9 segments - surface observation, advanced observation and observations quality in the observation field; data assimilation, numerical model and infrastructure in the data processing field; forecast accuracy in the forecast field; climate prediction and climate change in the climate field - in this research, we classified the meteorological technology into four fields. In the survey assessment, another 10 items in addition to the above 11 ones (total 21 items) were used. In the field of climate, Korea was found to lag far behind the U.S. (96.5p) and Japan (90.5p) with 77.6 points out of 100, which is 18.9 and 12.9 points lower than them respectively. On the other hand, Korea showed the narrowest gap with Japan (95.3p) and the U.S. (94.2) in the forecasting field, recording 90.3 points. Particularly, in surface observation, infrastructure and forecast accuracy segment, Korea was on a par with the U.S. and Japan, boasting 100.5 percent compared to their counterparts. However, in advanced observation, data quality and climate change segment, Korea was only at the level of 81.5 percent compared to that of the U.S. and Japan. All in all, the technological prowess of Korea, scoring 84.6 points, stood at 89.7 percent of that of the U.S. (94.3p) and 91.9 percent of Japan (92.1p).