• Title/Summary/Keyword: Cleavage fracture

Search Result 111, Processing Time 0.024 seconds

Effects of Microstructural Parameters on the Reduction of Area in Hyper-eutectoid Steel Wires (과공석 강선에서 미세조직 인자들이 단면감소율에 미치는 영향)

  • An, K.S.;Park, J.H.;Bae, H.J.;Nam, W.J.
    • Transactions of Materials Processing
    • /
    • v.25 no.5
    • /
    • pp.306-312
    • /
    • 2016
  • Effects of manufacturing conditions, such as austenitizing temperature, patenting temperature and carbon content in steels, on mechanical properties, especially on reduction of area (RA), of hyper-eutectoid steel wires were investigated. RA increased and then decreased with transformation temperature. This was attributed to the presence of abnormal structures in steels transformed at low transformation temperatures and the occurrence of shear cracking during tensile testing of steels transformed at high transformation temperatures. The increase of austenitizing temperature resulted in the increased austenite grain size and consequently the decrease of RA. The decrease of RA with increasing the carbon content in steels was attributed to the increased fraction of cleavage fracture in tensile fractured surfaces.

Effects of Tool Rotation and Transition Speed during Friction Stir Welding of Al 7075-T651 Alloy (Al 7075-T651의 마찰교반 용접에 대한 회전속도와 이송속도의 영향)

  • Han, Min-Su;Jeon, Jeong-Il;Jang, Seok-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.532-539
    • /
    • 2007
  • The 7075-T651 Al alloy was welded by friction stir welding. Microstructure, macro behaviors and fracture type in the nugget, thermo-mechanically affected zone(TMAZ) and heat affected zone(HAZ) of the welded part were compared to base metal. The microsturctures of nugget zone were compared with tool rotation speeds and various tool transition speed. When the rotation speeds were decreased and transition speeds were increased, the hardness of nugget zone were decreased. Also, the optimal microstructure was observed at the low rotation speed of 800rpm and the high transition speed of 124mm/min. The transgranular dimple and quasi-cleavage at fractured part of nugget zone were investigated.

Research on building AI learning data for rapid quality assessment of aggregates (골재의 신속한 품질평가를 위한 AI 학습용 데이터 구축에 관한 연구)

  • Min, Tae-Beom;Kim, In;Lee, Jae-Sam;Baek, Chul-Seoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.209-210
    • /
    • 2023
  • In this study, the accuracy of the assembly rate of fine aggregate and the cleavage rate of coarse aggregate was analyzed using the constructed learning data. As a result, it was possible to predict the distribution of assembly rate for fine aggregate through a simple sample collection image, showing an accuracy of 96%. The classification of the aggregates could be confirmed by analyzing the fracture shape of the gravel, showing an accuracy of 97%.

  • PDF

A Study on the Post-Weld Heat Treatment Effect to Mechanical Properties and Hydrogen Embrittlement for Heating Affected Zone of a RE 36 Steel

  • Moon, Kyung-Man;Lee, Myung-Hoon;Kim, Ki-Joon;Kim, Jin-Gyeong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.2 no.6
    • /
    • pp.283-288
    • /
    • 2003
  • The cathodic protection method is being widely used in marine structural steel, however a high tensile steel like RE 36 steel for marine structural steel is easy to get hydrogen embrittlement due to over protection during cathodic protection as well as preferential corrosion of HAZ(Heating Affected Zone) part. In this paper, corrosion resistance and mechanical properties such as elongation and hydrogen embrittlement were investigated with not only in terms of electrochemical view but also SSRT(Slow Strain Rate Test) method with applied constant cathodic potential, analysis of SEM fractography in case of both As-welded and PWHT(Post-Weld Heat Treatment) of $550^{\circ}C$. The best effect for corrosion resistance was apparently indicated at PWHT of $550^{\circ}C$ and elongation was increased with PWHT of $550^{\circ}C$ than that of As-welded condition. On the other hand. Elongation was decreased with applied potential shifting to low potential direction which may be caused by hydrogen embrittlement, however the susceptibility of hydrogen embrittlement was decreased with PWHT of $550^{\circ}C$ than that of As-welded condition and Q.C(quasi cleavage) fracture mode was also observed significantly according to increasing of susceptibility of hydrogen embrittlement. Eventually it is suggested that an optimum cathodic protection potential range not causing hydrogen embrittlernent is from -770 mV(SCE) to -850 mV(SCE) in As-welded condition while is from -770 mV(SCE) to -875 mV(SCE) in PWHT of $550^{\circ}C$.

Evaluation on Hydrogen Embrittlement of 5 Types of High Strength Dual Phase Steels by Small Punch Test (소형펀치시험에 의한 5종의 고강도 DP강 수소취성 평가)

  • Choi, Jong-Un;Han, Kyung-Gu;Park, Jae-Woo;Kang, Kae-Myung
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.40-46
    • /
    • 2014
  • The hydrogen embrittlement degree of 5 type high strength DP steel charged with hydrogen by electrochemical method was evaluated by small punch test(SP test). After SP test, SP absorbed energy was remarkably decreased from 363 kgf-mm to 209 kgf-mm with increasing hydrogen charging time from 5hr to 50hr at DP5 specimen under the $200mA/cm^2$ current density condition. It was investigated that the decrease of hydrogen charging amount and SP absorbed energy according to the increase of current density and hydrogen charging time had a linear relationship. And it also investigated that the change of bulb height appeared by the SP test was decreased from 1.79mm to 1.59mm with the hydrogen charging conditions. It was supposed that it could be used as indicator of the evaluation of hydrogen embrittlement because of the similar trend of the formal results of SP absorbed energy. From the SEM observation of fracture area by crack in bulb, the morphology of fracture surface according to increasement of the hydrogen charging amount was varied with the cleavage mode.

Effect of Heat Treatment on the Tensile Deformation Behavior of Au-Sn Strip Manufactured by Strip Casting Process (박판 주조법으로 제조된 Au-Sn 스트립의 열처리에 따른 인장 변형 거동)

  • Lee, Kee-Ahn;Jin, Young-Min;NamKung, Jung;Kim, Mun-Chul
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.464-466
    • /
    • 2009
  • This study tried to examine the suitability of strip casting process such as PFC (Planar Flow Casting) method for soldering Au-Sn strip. The effect of heat treatment on the tensile behavior and mechanical properties of an Au-Sn strip was investigated through tensile test, micro hardness test, X-ray diffraction (XRD), SEM, and TEM observations. It was apparent that 20-mm width Au-Sn strip could be well produced by using planar flow casting process. Tensile results showed that tensile strength increased from 338.3MPa to 310MPa and plastic strain improved from 0% to 1.5% with heat treatment ($170^{\circ}C$/70 hrs.). The microstructure of Au-Sn strip mainly consisted of two phases; $Au_5Sn(\zeta)$ and AuSn($\sigma$). It was also found that inhomogeneous amorphous local structure continuously changed to the homogeneous two phases microstructure with heat treatment. The fractographical observation after tensile test indicated the cleavage fracture mode of as-casted Au-Sn strip. On the other hand, the heat treated Au-Sn strip showed that fracture propagated along interface between brittle AuSn and ductile $Au_5Sn$ phases. The deformation behavior of strip casted Au-Sn alloy with microstructural evolution and the improve method for ductility of this alloy was also suggested.

  • PDF

Characterization of Acoustic Emission Signal for Welding Flaw and Stress Corrosion of SPPH Steels (SPPH강의 용접결함과 응력부식에 따른 음향 방출 신호의 특성)

  • Kim, Sung-Dai;Jung, Woo-Gwang;Lee, Jong-O;Jung, Yu-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.97-104
    • /
    • 2007
  • An investigation has been made on the relationship between characteristics of Acoustic Emission (AE) signal in welding flaw and the stress corrosion defect in-service for the high pressure pipe steel. In order to tackle the problem of welding flaw in high pressure pipe, specimens were made by the aid of the application of both corrosion liquid usage and a quenching method after local heating. The amplitude of signal was $60{\sim}75\;dB$ in the territory which is suspected for defect, and the specimens which only have welding flaw showed gradients of 0.034, 0.034, 0.035. Moreover, there is a certain increase in gradient even though the differences are very slight. That is, corrosion specimens showed new gradients of 0.040, 0.039, 0.041 which put welding flaw and corrosion mechanism together. After pressurizing 3 minutes, AE signal has been detected from welding flaw easily in each part of the section. It is possible to predict the occurrence and also prevent the damage of stress corrosion crack which has characteristics of cleavage fracture.

A Study on the Weldability and Mechanical Characteristics of Dissimilar Materials Butt Joints by Laser Assisted Friction Stir Welding (Laser-FSW Hybrid 접합기술을 적용한 이종재료(Al6061-T6/SS400) 접합부의 접합성 및 기계적 특성에 관한 연구)

  • Bang, Han-Sur;Bang, Hee-Seon;Kim, Hyun-Su;Kim, Jun-Hyung;Oh, Ik-Hyun;Ro, Chan-Seung
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.70-75
    • /
    • 2010
  • This study intends to investigate the weldability and mechanical characteristics of butt weld joints by LAFSW for dissimilar materials (Al6061-T6 and SS400). At optimum welding conditions, the tensile strength of dissimilar materials joints made by FSW is found to be lower than that of LAFSW. Due to the increase in plastic flow and formation of finer recrystallized grains at the TMAZ and SZ by laser preheating in LAFSW, the hardness in LAFSW appeared to be higher than that of FSW. Compared with FSW, finer grain size is observed and elongated grains in parent metal are deformed in the same direction around the nugget zone in TMAZ of Al6061-T6 by LAFSW. Whereas, at weld nugget zone, coarse grain size is appeared in LAFSW compared to FSW, which is owing to more plastic flow due to laser preheating effect. In dissimilar materials joints by LAFSW, ductile mode of fracture is found to occur at Al6061 side with fewer brittle particles. Mixed mode of cleavage area and ductile fracture is observed at SS400 side.

Effect of Heat Treatment on Microstructure and Mechanical Properties of an Fe-6.5Mn-0.08C Medium-Manganese Steel (열처리에 따른 Fe-6.5Mn-0.08C 중망간강의 미세조직과 기계적 특성)

  • Yoon, Young-Chul;Lee, Sang-In;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.30 no.1
    • /
    • pp.8-13
    • /
    • 2020
  • Effect of heat treatment on microstructure and mechanical properties of an Fe-6.5Mn-0.08C medium-manganese steel is investigated in this study. Three kinds of medium-manganese steel specimens are fabricated by varying heat treatments of intermediate quenching (IQ), step quenching (SQ), and intercritical annealing (IA). Hardness and tensile tests are performed to examine the correlation of microstructure and mechanical properties for the Fe-6.5Mn-0.08C medium-manganese steel specimens. The IQ and SQ specimens have microstructures of martensite matrix with ferrite, whereas IA specimen exhibits microstructure of acicular ferrite matrix with martensite. The tensile test results show that the SQ specimen with martensite matrix has the highest yield strength and the lowest elongation. On the other hand, the SQ specimen has the highest hardness due to the relatively lower reduction of carbon content in martensite during intercritical annealing. According to the fractography of tensile tested specimens, the SQ specimen exhibits a dimple and quasi-cleavage fracture appearance while the IQ and IA specimens have fully ductile fracture appearance with fine-sized dimples caused by microvoid coalescence at ferrite and martensite interface.

Correlation Study of Microstructure and Mechanical Properties in Heat Affected Zones of API X80 Pipeline Steels containing Complex Oxides (복합산화물이 형성된 API X80 라인파이프강의 용접열영향부 미세조직과 기계적 특성의 상관관계 연구)

  • Shin, Sang Yong;Oh, Kyoungsik;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.2
    • /
    • pp.59-70
    • /
    • 2009
  • This study is concerned with the correlation between microstructure and mechanical properties in heat affected zones (HAZs) of API X80 pipeline steels containing complex oxides. Three kinds of specimens were fabricated by varying alloying elements of Ti, Al, and Mg to form complex oxides, and their microstructures, Vickers hardness, Charpy impact properties were investigated. The number of complex oxides increased as the excess amount of Ti, Al, and Mg was included in the steels. The simulated HAZs containing a number of oxides showed a high volume fraction of acicular ferrite region because oxides acted as nucleation sites for acicular ferrite. According to the correlation study between thermal input, volume fraction of acicular ferrite region, and Charpy impact properties, the ductile fracture occurred predominantly when the volume fraction of acicular ferrite region was 65% or higher, and the Charpy absorbed energy was excellent over 200 J. When the volume fraction of acicular ferrite region was 35% or lower, the Charpy absorbed energy was poor below 50 J as the brittle cleavage fracture occurred. These findings suggested that the active nucleation of acicular ferrite in the oxide-containing steel HAZs was associated with the great improvement of Charpy impact properties of the HAZs.