• Title/Summary/Keyword: Cleavage fracture

Search Result 111, Processing Time 0.039 seconds

Fractographic Studies of Impact Damage in Single Crystal Sapphire (충격에 의한 단결정 Sapphire의 파면 조직에 관한 연구)

  • 김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.14 no.1
    • /
    • pp.19-24
    • /
    • 1977
  • 상온에서 단결정 Sapphire가 충격에 의해서 파괴될 때에 수반되는 미세 조직변화에 대하여 관찰하였다. 파괴된 시편을 광학현미경으로 조사한 결과 cleavage는 주로 rhombohedral plane에서 일어나고 있음을 알았다. 그러나 관찰시료 파면의 양상을 박막(replica)으로 만들어 투과형 전자현미경으로 관찰한 결과로는 국부적으로 소성변화가 일어나고 있음을 알 수 있었다. 이러한 국부적인 소성변화는 crack의 진행을 저해하거나 또는 진로를 변경 시켜주므로 보다 높은 fracture energy를 유발시키는 원인이 됨을 알 수 있다.

  • PDF

암반공학적 측면에서본 신생대 암반비탈면의 공학적 문제 및 대책

  • Shin, Hee-Soon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.285-289
    • /
    • 2005
  • The Cenozoic Era consists of two period , the Tertiary and the Quaternary Period. Weak rock types may include areas containing: 1) poorly cemented or uncemented sediments, 2) highly weathered rock, or 3) fault lines. Especially this paper deal with poorly cemented or uncemented sedimentary rocks in slope. Mechanical weathering is caused by physical processes such as absorption and release of water, and changes in temperature and stress at or near the exposed rock surface. It results in the opening of discontinuities, the formation of new discontinuities by rock fracture, the opening of grain boundaries, and the fracture or cleavage of individual mineral grains. Decomposition causes some silicate minerals such as feldspars to change to clay minerals. There was a strong negative correlation between water absorption and important engineering properties such as strength and durability.

  • PDF

EFFECT OF POST-WELD HEAT TREATMENT OF MARINE STRUCTURE STEEL DURING CATHODIC PROTECTION

  • Kim, Seong-Jong;Masazumi Okido;Kim, Jin-Gyeong;Moon, Kyung-Man
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.273-275
    • /
    • 2002
  • The effect of post-weld heat treatment (PWHT) of marine structures steel was investigated at electrochemical viewpoint. In addition, slow strain rate test (SSRT) was carried out to investigate both electrochemical and mechanical properties by PWHT effect during impressed current cathodic protection. The optimum cathodic protection potential by SSRT was -770 mV(SCE). At the applied cathodic protection potential of -770 mV -850 mV(SCE), the fracture morphology was dimple pattern with ductile fracture, while it was transgranular pattern (Q.C: quasi cleavage) under -875 mV(SCE).

  • PDF

The Tensile Properties and Wear Behavior of Mixing-reinforced Composites by Squeeze Casting Process (혼합강화 복합재료의 인장 및 내마모 특성)

  • Kim, Yong-Hyeon;Lee, Gwang-Hak
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.392-397
    • /
    • 1999
  • The tensile strength and water resistance of ADC12 alloy matrix composites reinforced with saffil/ceraklwool and saffil/Si particle prepared by squeeze casting have been investigated in room temperature and $250^{\circ}C$. Adhesive and scuffing wear phenomena was studied when load was changed to 10~40N and wear velocity was 2.0m/s at room temperature and $250^{\circ}C$. Generally, the morphology of tensile fractured surface revealed dimple pattern which implies ductile fracture of the composites. However, cleavage fracture was also observed in case of ADC12 alloy based saffil/Si particle composite. The maximum tensile strength of 320MPa was obtained in ADC12 alloy based composites reinforced by saffil/cerakwool(5:5) preformed fibers. In the results of dry wear test, it was observed that scuffing was occurred at 40N in room temperature and 30N for $250^{\circ}C$.

  • PDF

The Effect of Surface Defects on the Cyclic Fatigue Fracture of HEROShaper Ni-Ti rotary files in a Dynamic Model: A Fractographic Analysis (Fractographic 분석을 통한 HEROShaper 니켈티타늄 전동 파일의 피로파절에 미치는 표면결함의 역할)

  • Lee, Jung-Kyu;Kim, Eui-Sung;Kang, Myoung-Whai;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.2
    • /
    • pp.130-137
    • /
    • 2007
  • This in vitro study examined the effect of surface defects on cutting blades on the extent of the cyclic fatigue fracture of HEROShaper Ni-Ti rotary files using fractographic analysis of the fractured surfaces. A total of 45 HEROShaper (MicroMega) Ni-Ti rotary flies with a #30/.04 taper were divided into three groups of 15 each. Group 1 contained new HEROShapers without any surface defects. Group 2 contained HEROShapers with manufacturing defects such as metal rollover and machining marks. Croup 3 contained HEROShapers that had been clinically used for the canal preparation of 4-6 molars A fatigue-testing device was designed to allow cyclic tension and compressive stress on the tip of the instrument whilst maintaining similar conditions to those experienced in a clinic. The level of fatigue fracture time was measured using a computer connected the system. Statistical analysis was performed using a Tukey's test. Scanning electron microscopy (SEM) was used for fractographic analysis of the fractured surfaces. The fatigue fracture time between groups 1 and 2, and between groups 1 and 3 was significantly different (p<0.05) but there was no significant difference between groups 2 and 3 (p>0.05). A low magnification SEM views show brittle fracture as the main initial failure mode At higher magnification, the brittle fracture region showed clusters of fatigue striations and a large number of secondary cracks. These fractures typically led to a central region of catastrophic ductile failure. Qualitatively, the ductile fracture region was characterized by the formation of microvoids and dimpling. The fractured surfaces of the HEROShapers in groups 2 and 3 were always associated with pre-existing surface defects. Typically, the fractured surface in the brittle fracture region showed evidence of cleavage (transgranular) facets across the grains, as well as intergranular facets along the grain boundaries. These results show that surface defects on cutting blades of Ni-Ti rotary files might be the preferred sites for the origin of fatigue fracture under experimental conditions. Furthermore this work demonstrates the utility of fractography in evaluating the failure of Ni-Ti rotary flies.

An Evaluation of the Fracture Behavior for Flash Butt Welding zone by Acoustic Emission Method (AE방법에 의한 Flash Butt 용접부의 파괴거동 평가)

  • 김용수;이하성;강동명
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.9-18
    • /
    • 1994
  • In this study, we conducted experimental tests to evaluate fracture behaviors of fresh-butt welded metal by Acoustic Emission technique. We selected similar welding and dissimilar welding process, the one welded for SM45C, SS41 and SUS304 of each material, the other for SM45C and SS41, SM45C and SUS304 and SS41 and SUS304. The fracturing processes of weld metal were estimatied through the fracture toughness test with compact tension specimens and fractography analysis. In ASTM test method E-399, type I curves for materials of this study were obtained by load-cod diagram of fracture toughness test. and 5% offset load( $P_{5}$) was estimated as the estimated crack initial load( $P_{Q}$), The estimated crack initial load( $P_{Q}$) of similar welding materials generally lower than base matal, and then SM45C appeared greatly in decreasing rate of PB, SS41 and SUS304 appeared in order. $P_{Q}$ of dissimilar welding materials were lower than the similar welding materials. $P_{Q}$ of welding of SM45C and SS41 appeared in small, SUS304 and SS41 appeared greatly in dissimilar welding materials. In fracture toughness test, AE counts increased before the inflection point of the slope, decreased after that. It was found that increasing of AE counts were due to the microcrack formation at the crack tip near the $P_{5}$ point through AE data. For welding materials in this study, both low and high AE amplitude appeared simulataneously. It was confirmed that the low AE amplotude was due to formation of micro void, micro crack or micro dimple, the high AE amplitude was caused by microvoid coalescence and quasi-cleavage fracture through analyses of fractograpy.apy.apy.apy.

  • PDF

Study on Fracture Behavior of Mild Steel Under Cryogenic Condition (연강(Mild Steel)의 극저온 파괴 거동에 대한 실험적 연구)

  • Choi, Sung Woong;Lee, Woo IL
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.62-66
    • /
    • 2015
  • Considering for plants and structure under extreme conditions is required for the successful design, especially temperature and pressure. The ductile-brittle transition temperature (DBTT) for the materials under extreme condition needs to be considered. In this study, A-grade mild steel for the LNG carrier and offshore plant was examined by performing low-temperature Charpy V-notch (CVN) impact tests to investigate DBTT and the fracture toughness. The absorbed energy decreased gradually with the experimental temperature, which showed an upper-shelf energy region, lower shelf energy region, and transition temperature indicating DBTT. In addition, the fracture surface morphologies of the mild steels indicated ductile fractures at the upper-shelf energy level, with wide and large-sized dimples, whereas a brittle fracture surface, where was observed at the lower-shelf energy level, with both large and small cleavage facets. Based on the experimental results, ductile brittle transition temperature was estimated in about $-60^{\circ}C$.

Cracking Susceptibility of Laser Cladding Process with Co-Based Metal Matrix Composite Powders (레이저 클래딩 공정 조건이 코발트 합금-텅스텐 카바이드 혼합 코팅층의 균열 발생에 미치는 영향)

  • Lee, Changmin;Park, Hyungkwon;Lee, Changhee
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.41-46
    • /
    • 2014
  • In this study, cracking susceptibility of laser cladding was investigated according to the processing parameters such as laser power, scan speed and feeding rate with blended powders of stellite#6 and technolase40s (WC+NiCr). The solidification microstructure of clad was composed of Co-based dendrite structures with ${\gamma}+Cr7C3$ eutectic phases at the dendritic boundaries. The crack propagation showed transgranular fracture along dendritic boundaries due to brittle chrome carbide at the eutectic phases. From results of fractography experiments, the fracture surface was typical cleavage brittle fracture in the clad and substrate. The number of clad cracks, caused by a tensile stress after the solidification, increased with increase of laser power, scan speed and feeding rate. Increase of the laser power caused large pores by facilitating WC decarburizing reaction. And the pores affected increase of crack susceptibility. High scan speed caused increment of clad cracks due to thermal stress and WC particle fractures. Also, increase of the feeding rate accompanied an amount of WC particles causing crack initiation and decarburizing reaction.

A Study on Fatigue Strength in the Friction Welded Joints of HSS-Co to SM55C Carbon Steel(II) (HSS-Co와 SM55C 이종 마찰용접재의 피로강도에 관한 연구(2))

  • 서창민;서덕영;이동재
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.929-940
    • /
    • 1995
  • The fatigue strength and fracture topography in the friction welded interface of high speed steel (HSS-Co) to SM55C carbon steel have been investigated through the fatigue test, SEM fractograph and EDS (energy dispersive spectrometer) analysis. Three kinds of specimens used in this research are the friction welded joints, HSS-Co and SM55C carbon steel with circumferential notch, saw notch and smooth, respectively. The notch sensitivity factor, .eta. of the friction welded joints is lower than that of the base materials, and that represents a superiority of the joint performance of FRW. Fracture topography of the FRW specimens with a notch showed a cleavage or brittle appearance, while that of the FRW smooth specimen appeared to be ductile. Furthermore, although fatigue crack likely initiated near the weld interface of the FRW smooth specimen, crack propagation continued into the HAZ of SM55C steel. Finally, fatigue fractures of the base materials were associated primarily with the inclusions located at the outer periphery of the specimen.