• 제목/요약/키워드: Clean energy

검색결과 1,454건 처리시간 0.029초

Evaluation of the clean air delivery rate performance of a ceiling air circulator with filters (필터 적용 천정형 공기순환기의 공기청정화능력 평가)

  • Joe, Yun-Haeng;Shin, Dongho;Park, Hyun-Seol;Heo, Jieun;Shim, Joonmok
    • Particle and aerosol research
    • /
    • 제17권2호
    • /
    • pp.29-36
    • /
    • 2021
  • In this study, the clean air delivery rate (CADR) of ceiling air circulator (CAA) was determined under indoor environmental simulation conditions. An air filter was used to provide air cleaning ability to the CAA. The CADR of filter adapted CAA was evaluated and compared with the value of commercial air purifier. The installation of mesh-shaped filter on the CAA showed particle reduction effect on the particles over 0.4 ㎛ in diameter, but the CADR was up to 0.25 m3/min. When the filter having 99.9% in collection efficiency was installed on the CAA, its CADR was 1.52 m3/min, while the CADR of commercial air purifier was 3.19 m3/min.

An Evaluation of Net-zero Contribution by Introducing Clean Hydrogen Production Using Life Cycle Assessment (청정수소 생산 방식 도입에 따른 LCA 기반 탄소중립 기여도 평가)

  • SO JEONG JANG;DAE WOONG JUNG;JEONG YEOL KIM;YONG WOO HWANG;HEE KYUNG AN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • 제35권2호
    • /
    • pp.175-184
    • /
    • 2024
  • This study focuses on investigating the importance of managing greenhouse gas emissions from global energy consumption, specifically examining domestic targets for clean hydrogen production. Using life cycle assessment, we evaluated reductions in global warming potential and assessed the carbon neutrality contribution of the domestic hydrogen sector. Transitioning from brown or grey hydrogen to blue or green hydrogen can significantly reduce emissions, potentially lowering CO2 equivalent levels by 2030 and 2050. These research findings underscore the effectiveness of clean hydrogen as an energy management strategy and offer valuable insights for technology development.

Performance Estimation and Process Selection for Chemical-Looping Hydrogen Generation System (금속매체 순환식 수소생산 시스템의 성능예측 및 공정선정)

  • Ryu, Ho-Jung;Jin, Gyoung-Tae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • 제16권3호
    • /
    • pp.209-218
    • /
    • 2005
  • To find a suitable metal component in oxygen carrier particles for chemical-looping hydrogen generation system(CLH), oxygen transfer capacities of metal components were compared and Ni has been selected as the best metal component. The proper operating conditions to achieve high hydrogen generation rate have been investigated based on the chemical-equilibrium composition analysis for water splitting reactor. Moreover, suitable compositions of syngas from gasifier of heavy residue to achieve high energy efficiency have been investigated by calculation of heat of reaction. Based on the selected operating conditions, the best configuration of two interconnected fluidized beds system for the chemical-looping hydrogen generator has been investigated as well.

Electrochemical Synthesis of Ammonia from Water and Nitrogen using a Pt/GDC/Pt Cell (Pt/GDC/Pt 셀을 이용한 물과 질소로부터 전기화학적 암모니아 합성)

  • Jeoung, Hana;Kim, Jong Nam;Yoo, Chung-Yul;Joo, Jong Hoon;Yu, Ji Haeng;Song, Ki Chang;Sharma, Monika;Yoon, Hyung Chul
    • Korean Chemical Engineering Research
    • /
    • 제52권1호
    • /
    • pp.58-62
    • /
    • 2014
  • Electrochemical ammonia synthesis from water and nitrogen using a Pt/GDC/Pt cell was experimentally investigated. Electrochemical analysis and ammonia synthesis in the moisture-saturated nitrogen environment were performed under the operating temperature range $400{\sim}600^{\circ}C$ and the applied potential range OCV (Open Circuit Voltage)-1.2V. Even though the ammonia synthesis rate was augmented with the increase in the operating temperature (i.e. increase in the applied current) under the constant potential, the faradaic efficiency was decreased because of the limitation of dissociative chemisorption of nitrogen on the Pt electrode. The maximum synthesis rate of ammonia was $3.67{\times}10^{-11}mols^{-1}cm^{-2}$ with 0.1% faradaic efficiency at $600^{\circ}C$.

Improved Performance of Direct Carbon Fuel Cell by Catalytic Gasification of Ash-free Coal (무회분탄 연료의 촉매 가스화에 의한 직접탄소연료전지의 성능 향상)

  • Jin, Sunmi;Yoo, Jiho;Rhee, Young Woo;Choi, Hokyung;Lim, Jeonghwan;Lee, Sihyun
    • Clean Technology
    • /
    • 제18권4호
    • /
    • pp.426-431
    • /
    • 2012
  • Carbon-rich coal can be utilized as a fuel for direct carbon fuel cell (DCFC). However, left-behind ash after the electrochemical oxidation may hinder the electrochemical reactions. In this study, we produced ash-free coal (AFC) by thermal extraction and then tested it as a fuel for DCFC. DCFC was built based on solid oxide electrolyte and the electrochemical performance of AFC mixed with $K_2CO_3$ was compared with AFC only. Significantly enhanced power density was found by catalytic steam gasification of AFC. However, an increase of the power density by catalytic pyrolysis was negligible. This result indicated that a catalyst activated the steam gasification reactions, producing much more $H_2$ and thus increasing the power density, compared to AFC only. Results of a quantitative analysis showed much improved kinetics in AFC with $K_2CO_3$ in agreement with DCFC results. A secondary phase of potassium on yttria-stabilized zirconia (YSZ) surface was observed after the cell operation. This probably caused poor long-term behavior of AFC with $K_2CO_3$. A thin YSZ (30 ${\mu}m$ thick) was found to be higher in the power density than 0.9 mm of YSZ.

A study on the food clean room system observing the regulations of HACCP (HACCP의 환경 최적화를 위한 식품 클린룸 설계에 관한 연구)

  • Won, Young-Jae;Suh, Kee-Won
    • Proceedings of the SAREK Conference
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.520-526
    • /
    • 2009
  • This study proposed the optimum design values for the biological clean room system observing the regulations of Hazard Analysis Critical Control Point (HACCP). Even though the standard for industrial clean room system has been well established, the basis for biological food clean room system is the first stage. In order to prevent the contaminations in advance for food storages, processes, and distributions, the criterion of Hazard Analysis Critical Control Point is positively required. This study also suggested the possible ways of how to avoid the hazardous contaminations.

  • PDF

Study on the Development of Battery Energy Storage Device Using Mid night Power (축전식 심야전력기기의 개발에 관한 연구)

  • Kim, Ho-Yong;Kim, Jae-Eon;Rho, Dae-Seok;Kim, Eung-Sang
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1991년도 추계학술대회 논문집 학회본부
    • /
    • pp.63-66
    • /
    • 1991
  • With the diversity of life patterns and the improvement of level in life which have been resulted from the economic development, people have showed the tendency to pursue the comfortable life as well as the home automation or intelligent house. Furthermore, the clean energy supply and management system have been introduced for the solution of environmental problem on earth and the effective utilization of energy. This study is to describe the battery energy storage device, which is one of the clean energy supply and management systems that are economically efficient in both sides of supply and demand. and able to solve the problem of energy crisis.

  • PDF

Material and Heat Balances of Bioethanol Production Process by Concentrated Acid Saccharification Process from Lignocellulosic Biomass (목질계 Biomass로부터 강산 당화 공정에 의한 Bioethanol 생산 공정의 물질 및 열수지)

  • Kim, Hee-Young;Lee, Eui-Soo;Kim, Won-Seok;Suh, Dong-Jin;Ahn, Byoung-Sung
    • Clean Technology
    • /
    • 제17권2호
    • /
    • pp.156-165
    • /
    • 2011
  • The process for bioethanol production from lignocellulosic biomass was studied through process simulation using PRO/II. Process integration was conducted with concentrated acid pretreatment, hydrolysis process, SMB (simulated moving bed chromatography) process and pervaporation process. Energy consumption could be minimized by the heat recovery process. In addition, material and energy balance were calculated based on the results from the simulation and literature data. A net production yield of 4.07 kg-biomass and energy consumption value of 3,572 kcal per 1 kg ethanol were calculated, which is indicating that 26% yield increase and 30% energy saving compared to the bioethanol production process with dilute-acid hydrolysis (SRI report). In order to make it possible, sugar conversion yield of cellulose and hemi-cellulose is to be reached up to 90% and fermentation of xylose needs to be developed. In order to reduce the energy consumption up to 30%, the concentration of acid solution after being separated by 5MB should exceed 20%. If acid/sugar separation by SMB process is to be practical, the bioethanol process designed in this study can be commercially feasible.