• Title/Summary/Keyword: Clean diesel vehicle

Search Result 26, Processing Time 0.02 seconds

Hydraulic Modal Analysis of High-Pressure Common-rail Fuel Injection System for Passenger Vehicle (승용 CR 연료분사시스템에 대한 유압 Modal 분석)

  • Sung, Gisu;Kim, Sangmyeong;Kim, Jinsu;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.14-19
    • /
    • 2015
  • Recently, R&D demand for environmental friendly vehicle has rapidly increased due to its global environmental issues such as global warming, energy and economic crisis. Under this situation, the most realistic alternative way for environmental friendly vehicle is a clean diesel vehicle. The common-rail fuel injection system, as key technology of clean diesel vehicle, consists of a high pressure pump, common-rail, high pressure fuel line and electronic control injector. In common-rail high-pressure fuel injection system, high pressure wave of injection system and geometry of injector elements have a major effects on high-pressure fuel spray. Therefore, in this study, the numerical model was developed for analysis about the common-rail fuel pressure pulsation by using AMESim code. We could secure stability of common-rail high-pressure fuel injection system through optimal design of fuel line.

An Experimental Study on Spray Characteristics of Bio-diesel fuel in Three Injectors with Different Operating Mechanism for Common-rail System (커먼레일 시스템용 구동방식에 따른 인젝터별 바이오디젤 분무 특성 연구)

  • Sung, Gisu;Kim, Jinsu;Jeong, Seokchul;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.20 no.2
    • /
    • pp.88-94
    • /
    • 2015
  • Recently, exhaust gas regulation has been gradually strengthened due to depletion of fossil fuels and environmental problem like a global warming. Due to this global problem, the demand for eco-friendly vehicle development is rapidly increasing. A clean diesel vehicle is considered as a realistic alternative. The common-rail fuel injection system, which is the key technology of the clean diesel vehicle, has adopted injection strategies such as high pressure injection, multiple injection for better atomization of the fuel. In addition, the emission regulations in the future is expected to be more stringent, which a conventional engine is difficult to deal with. One of the way for actively proceeding is the study of alternative fuels. Among them, the bio-diesel has been attracted as an alternative of diesel. So, in this study, spray characteristics of bio-diesel was analyzed in the common-rail fuel injection system with three injectors driven by different operating mechanism.

Steady State Performance Analysis of Five-mode Hybrid Power Transmission Systems (5-모드 하이브리드 동력전달 시스템의 정상상태 성능분석)

  • Lim, Won-Sik;Kim, Nam-Woong;Choi, Wan-Mug;Park, Sung-Cheon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • The core of the automotive industry's strategy to handle the climate change can be explained as the development and distribution of the vehicles with high fuel efficiencies and low emission. Clean Diesel, hydrogen fuel cell, electric, and especially hybrid power-train vehicles have been actively studied. This paper dynamically analyzes the performance of a hybrid system's five driving modes. The research subject consists of one engine, two electric motors, two simple planetary gears, and one compound planetary gears with five clutches. To define the steady state equation of the system, interaction formulas of five driving modes are introduced with motion variables and torque variables. These formulas are then used to analyze the speeds, torques, and power flows of each mode.

Analysis of Nano-particle and Emissions Characteristics for FTP75 Mode in LPLi Vehicle (FTP75 모드에 의한 LPG액상분사자동차의 배출가스 및 나노입자배출특성)

  • Lee, Ho-Kil;Kim, Yong-Tae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.2
    • /
    • pp.161-167
    • /
    • 2009
  • The regulation of the $CO_2$ emit from vehicles have become much more stringent in recent years. This stringent regulation is more request vehicle manufacturers to develop the alternative fuel vehicles for reducing exhaust emissions. LPG fuel is more clean energy compares with gasoline and diesel fuel. Especially, $CO_2$ emission of LPG Vehicle is less than gasoline vehicle and almost equal to diesel vehicle. For this reason, recently korean government is extending LPG fuel for hybrid car and light duty vehicle. In domestic, Propane is mixing $15{\sim}30%$ to butane for improvement of cold start at winter season. Therefore, In this paper was investigated that the characteristics of emissions according to propane mixing rate with 0, 10, 20, 30% were compared and analyzed by the vehicle test using LPG vehicle according to the FTP75 mode. It was also investigated the characteristics of nano-particle emit with propane mixing rate.

Catalytic Technology for NOx Abatement using Ammonia (암모니아를 환원제로 이용한 NOx 저감 촉매 기술)

  • Park, Soon Hee;Lee, Kwan-Young;Cho, Sung June
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.211-224
    • /
    • 2016
  • Three way catalyst has been used extensively for the exhaust gas treatment for the internal combustion gasoline engine. While, numerous research efforts have been directed to develop various technologies for the abatement of exhaust gas from diesel engine. Diesel engine operating under lean condition produces large amount of NOx and the corresponding catalytic technology employing vanadium supported titania using ammonia has been commercialized for heavy duty vehicle. Recently, the Cu catalyst supported on zeolite has been investigated for NOx abatement using ammonia because of its critical importance for ultra low emission vehicle. The current review shows the recent trend in research and development for zeolite based copper catalysts, which are mainly used as catalysts for selective catalytic reduction using ammonia, are one of the aftertreatment technologies for effectively removing nitrogen oxides from diesel exhaust.

A Study on Natural Gas Vehicle Conversion by Diesel Engine Improvement (디젤엔진개량에 의한 천연가스차량전환에 관한 연구)

  • Han, Yeong Chul;O, Yong Seok;Na, Wan Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.94-94
    • /
    • 1999
  • Natural gas is considered to be on e of the most promising candidates for a clean substitute fuel and a great amount of research on the compressed natural gas(CNG) fueled vehicle has been performed. In this s tudy, we try to understand the property of CNG fuel with using CNG engine experiment. In order to present the direction and application of CNG, we experiment with various operating conditions that is, spark timing, A/F ratio, air quantity and fuel quantity, etc. 11,967 cc engine was used in the experiment and the engine fuel ratio was determined in the way that the performance of dedicated CNG engine is corresponded to that of existing diesel engine. The performance and dedicated CNG engine were measured by changing the fuel injection timing. The dedicated CNG engine was proved to be good in describing the experimental results and according to the actual road test, acceleration and constant speed driving for dedicated CNG engine was better than existing diesel engine.

A Study on Performance of LNG Engine by Using 2-Zone Combustion Model (2영역 연소모델을 이용한 액화천연가스 기관의 성능에 관한 연구)

  • 한영출;오용석;조재명
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.3
    • /
    • pp.59-65
    • /
    • 1999
  • To reduce the particulate matter and nitrogen oxides from diesel engine, many studies are proceeding and being accomplished practically. In this situation, LNG engine has important meaning as a clean fuel and alternative energy. In this reason, we try to understand the property of LNG fuel and predict the performance with using LNG engine simulation program and practical test. It could help to lead and apply practically LNG engine was studied in performance and other parameter related with engine performance and compared with current diesel engine. The simulation program was proved to be good in describing the experimental result. This means current heavy duty vehicle could be modified to LNG engine.

  • PDF

A CFD Analysis on DPF for the Removal of PM from the Emission of Diesel Vehicle (디젤차량 배기가스의 PM 제거에 관한 매연여과장치 전산해석)

  • Yeom, Gyuin;Han, Danbee;Nam, Seungha;Baek, Youngsoon
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.301-306
    • /
    • 2018
  • Recently, due to the increase in the fine dust, regulations on PM generated from diesel cars are strengthened. There is a growing interest in diesel particulate filters (DPFs), a post-treatment device that removes exhaust gases from diesel vehicles. Therefore, one of the enhancements of the DPF efficiency is to reduce the pressure drop in the DPF, thereby increasing the efficiency of the filter and regeneration. In this study, the effect of cell density, channel shape, wall thickness, and inlet channel ratio of 5.66" SiC and Cordierite DPF on the pressure drop in DPF was investigated using ANSYS FLUENT simulator. As a result of the experiment, the pressure drop was smaller at 300 CPSI than 200 CPSI, and the anisotropy and O / S cell showed less than Isotropy by pressure drop of about 1,000 Pa. As the porosity increased by 10% the pressure drop was reduced by about 300 Pa and as the wall thickness increased by 0.05 mm, the pressure drop was increased by about 500 Pa.

Emission Characteristics of GTL(Gas to Liquid) Fuel in Diesel Engine (디젤 엔진에서 GTL(Gas to Liquid) 연료의 배출물 특성에 관한 연구)

  • Lee, Yong-Gyu;Moon, Gun-Feel;Choi, Kyo-Nam;Jeong, Dong-Soo;Kim, Byoung-Jun;Cha, Kyung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.84-91
    • /
    • 2008
  • Due to increasing need for better emission characteristics and lower fuel consumption rate in automotive engines, alternative fuels are drawing more attentions recently. The GTL (gas to liquid) is the one of most favored candidates. In this study, emission characteristics are compared between diesel and GTL fuel in commercial 2.0 liter diesel engine and vehicle with CRDi(Common Rail Direct injection) system. The effects of injection timings on emission and fuel consumption rate are compared at various engine speeds and loads. Noticeable reduction in HC, CO and PM emissions are observed due to higher cetane number and low sulfur and aromatic contents in GTL. On the trade-off curve of NOx and PM(Particulate matter) GTL showed much more benefits than diesel, where about 30% of PM mass decreased at the same operating conditions. On CVS 75 mode test in vehicle, GTL showed an excellent emission enhancement, in which 50% of HC, 21% of PM, and 12% of NOx engine-out emissions are decreased compared to ULSD(Ultra low sulfur diesel) fuel.